York Biomedical Research Institute, University of York, York, United Kingdom.
Department of Biology, University of York, York, United Kingdom.
mBio. 2020 Aug 25;11(4):e01364-20. doi: 10.1128/mBio.01364-20.
Membrane bound acyltransferase-3 (AT3) domain-containing proteins are implicated in a wide range of carbohydrate O-acyl modifications, but their mechanism of action is largely unknown. O-antigen acetylation by AT3 domain-containing acetyltransferases of spp. can generate a specific immune response upon infection and can influence bacteriophage interactions. This study integrates and functional analyses of two of these proteins, OafA and OafB (formerly F2GtrC), which display an "AT3-SGNH fused" domain architecture, where an integral membrane AT3 domain is fused to an extracytoplasmic SGNH domain. An -inspired mutagenesis approach of the AT3 domain identified seven residues which are fundamental for the mechanism of action of OafA, with a particularly conserved motif in TMH1 indicating a potential acyl donor interaction site. Genetic and evidence demonstrate that the SGNH domain is both necessary and sufficient for lipopolysaccharide acetylation. The structure of the periplasmic SGNH domain of OafB identified features not previously reported for SGNH proteins. In particular, the periplasmic portion of the interdomain linking region is structured. Significantly, this region constrains acceptor substrate specificity, apparently by limiting access to the active site. Coevolution analysis of the two domains suggests possible interdomain interactions. Combining these data, we propose a refined model of the AT3-SGNH proteins, with structurally constrained orientations of the two domains. These findings enhance our understanding of how cells can transfer acyl groups from the cytoplasm to specific extracellular carbohydrates. Acyltransferase-3 (AT3) domain-containing membrane proteins are involved in -acetylation of a diverse range of carbohydrates across all domains of life. In bacteria they are essential in processes including symbiosis, resistance to antimicrobials, and biosynthesis of antibiotics. Their mechanism of action, however, is poorly characterized. We analyzed two acetyltransferases as models for this important family of membrane proteins, which modify carbohydrates on the surface of the pathogen , affecting immunogenicity, virulence, and bacteriophage resistance. We show that when these AT3 domains are fused to a periplasmic partner domain, both domains are required for substrate acetylation. The data show conserved elements in the AT3 domain and unique structural features of the periplasmic domain. Our data provide a working model to probe the mechanism and function of the diverse and important members of the widespread AT3 protein family, which are required for biologically significant modifications of cell-surface carbohydrates.
膜结合酰基转移酶-3 (AT3) 结构域蛋白参与广泛的碳水化合物 O-酰基修饰,但它们的作用机制在很大程度上尚不清楚。 spp. 的 AT3 结构域蛋白的 O-抗原乙酰化可以在感染时产生特定的免疫反应,并影响噬菌体的相互作用。本研究整合了这两种蛋白,OafA 和 OafB(以前称为 F2GtrC)的 和 功能分析,它们具有“AT3-SGNH 融合”结构域架构,其中完整的跨膜 AT3 结构域与细胞外的 SGNH 结构域融合。基于 的诱变方法鉴定了七个对 OafA 作用机制至关重要的残基,其中 TMH1 中的一个特别保守的模体表明了潜在的酰基供体相互作用位点。遗传和 证据表明,SGNH 结构域既是必需的,也是 LPS 乙酰化所必需的。OafB 的周质 SGNH 结构域结构确定了以前未报道的 SGNH 蛋白的特征。特别是,结构域连接区的周质部分是结构化的。重要的是,该区域限制了受体底物特异性,显然是通过限制对活性位点的访问来实现的。两个结构域的共进化分析表明可能存在结构域间相互作用。结合这些数据,我们提出了一个经过改进的 AT3-SGNH 蛋白模型,其中两个结构域的取向受到结构限制。这些发现增强了我们对细胞如何将酰基从细胞质转移到特定的细胞外碳水化合物的理解。酰基转移酶-3 (AT3) 结构域包含的膜蛋白参与了所有生命领域中各种碳水化合物的 - 乙酰化。在细菌中,它们在共生、对抗生素的抗性和抗生素的生物合成等过程中是必不可少的。然而,它们的作用机制还没有很好地描述。我们分析了两种乙酰转移酶作为这个重要的膜蛋白家族的模型,这些蛋白修饰病原体表面的碳水化合物,影响免疫原性、毒力和噬菌体抗性。我们表明,当这些 AT3 结构域与周质伴侣结构域融合时,两个结构域都需要进行底物乙酰化。数据显示 AT3 结构域中的保守元件和周质结构域的独特结构特征。我们的数据提供了一个工作模型,用于探测广泛的 AT3 蛋白家族中多样化和重要成员的作用机制和功能,这些成员对于细胞表面碳水化合物的生物意义上的修饰是必需的。