Belur Nagaraj Sunil, Pena Michelle J, Ju Wenjun, Heerspink Hiddo L
Department of Clinical Pharmacy & Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
University of Michigan, Ann Arbor, Michigan, USA.
Diabetes Obes Metab. 2020 Dec;22(12):2479-2486. doi: 10.1111/dom.14178. Epub 2020 Sep 22.
To predict end-stage renal disease (ESRD) in patients with type 2 diabetes by using machine-learning models with multiple baseline demographic and clinical characteristics.
In total, 11 789 patients with type 2 diabetes and nephropathy from three clinical trials, RENAAL (n = 1513), IDNT (n = 1715) and ALTITUDE (n = 8561), were used in this study. Eighteen baseline demographic and clinical characteristics were used as predictors to train machine-learning models to predict ESRD (doubling of serum creatinine and/or ESRD). We used the area under the receiver operator curve (AUC) to assess the prediction performance of models and compared this with traditional Cox proportional hazard regression and kidney failure risk equation models.
The feed forward neural network model predicted ESRD with an AUC of 0.82 (0.76-0.87), 0.81 (0.75-0.86) and 0.84 (0.79-0.90) in the RENAAL, IDNT and ALTITUDE trials, respectively. The feed forward neural network model selected urinary albumin to creatinine ratio, serum albumin, uric acid and serum creatinine as important predictors and obtained a state-of-the-art performance for predicting long-term ESRD.
Despite large inter-patient variability, non-linear machine-learning models can be used to predict long-term ESRD in patients with type 2 diabetes and nephropathy using baseline demographic and clinical characteristics. The proposed method has the potential to create accurate and multiple outcome prediction automated models to identify high-risk patients who could benefit from therapy in clinical practice.
通过使用具有多种基线人口统计学和临床特征的机器学习模型,预测2型糖尿病患者的终末期肾病(ESRD)。
本研究共纳入来自三项临床试验(RENAAL试验,n = 1513;IDNT试验,n = 1715;ALTITUDE试验,n = 8561)的11789例2型糖尿病肾病患者。将18项基线人口统计学和临床特征用作预测因子,训练机器学习模型以预测ESRD(血清肌酐翻倍和/或ESRD)。我们使用受试者操作特征曲线下面积(AUC)评估模型的预测性能,并将其与传统的Cox比例风险回归模型和肾衰竭风险方程模型进行比较。
在RENAAL、IDNT和ALTITUDE试验中,前馈神经网络模型预测ESRD的AUC分别为0.82(0.76 - 0.87)、0.81(0.75 - 0.86)和0.84(0.79 - 0.90)。前馈神经网络模型选择尿白蛋白肌酐比值、血清白蛋白、尿酸和血清肌酐作为重要预测因子,并在预测长期ESRD方面获得了先进的性能。
尽管患者间存在较大差异,但非线性机器学习模型可用于利用基线人口统计学和临床特征预测2型糖尿病肾病患者的长期ESRD。所提出的方法有可能创建准确的多结局预测自动化模型,以识别在临床实践中可从治疗中获益的高危患者。