Suppr超能文献

深度卷积神经网络可从高度散射的细胞光谱中恢复纯净的吸收光谱。

Deep convolutional neural network recovers pure absorbance spectra from highly scatter-distorted spectra of cells.

机构信息

Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.

United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, Belarus.

出版信息

J Biophotonics. 2020 Dec;13(12):e202000204. doi: 10.1002/jbio.202000204. Epub 2020 Sep 28.

Abstract

Infrared spectroscopy of cells and tissues is prone to Mie scattering distortions, which grossly obscure the relevant chemical signals. The state-of-the-art Mie extinction extended multiplicative signal correction (ME-EMSC) algorithm is a powerful tool for the recovery of pure absorbance spectra from highly scatter-distorted spectra. However, the algorithm is computationally expensive and the correction of large infrared imaging datasets requires weeks of computations. In this paper, we present a deep convolutional descattering autoencoder (DSAE) which was trained on a set of ME-EMSC corrected infrared spectra and which can massively reduce the computation time for scatter correction. Since the raw spectra showed large variability in chemical features, different reference spectra matching the chemical signals of the spectra were used to initialize the ME-EMSC algorithm, which is beneficial for the quality of the correction and the speed of the algorithm. One DSAE was trained on the spectra, which were corrected with different reference spectra and validated on independent test data. The DSAE outperformed the ME-EMSC correction in terms of speed, robustness, and noise levels. We confirm that the same chemical information is contained in the DSAE corrected spectra as in the spectra corrected with ME-EMSC.

摘要

细胞和组织的红外光谱容易受到米氏散射扭曲的影响,这些扭曲严重掩盖了相关的化学信号。最先进的米氏消光扩展乘法信号校正(ME-EMSC)算法是从高度散射失真的光谱中恢复纯吸收光谱的强大工具。然而,该算法计算成本高,校正大型红外成像数据集需要数周的计算时间。在本文中,我们提出了一种深度卷积解散射自动编码器(DSAE),该算法基于一组经过 ME-EMSC 校正的红外光谱进行训练,可以大大减少散射校正的计算时间。由于原始光谱在化学特征上存在很大的可变性,因此使用不同的参考光谱来匹配光谱的化学信号来初始化 ME-EMSC 算法,这有利于校正的质量和算法的速度。一个 DSAE 是在使用不同参考光谱校正的光谱上进行训练的,并在独立的测试数据上进行验证。DSAE 在速度、鲁棒性和噪声水平方面都优于 ME-EMSC 校正。我们证实,DSAE 校正的光谱中包含与 ME-EMSC 校正的光谱相同的化学信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验