Magnussen Eirik Almklov, Zimmermann Boris, Blazhko Uladzislau, Dzurendova Simona, Dupuy-Galet Benjamin, Byrtusova Dana, Muthreich Florian, Tafintseva Valeria, Liland Kristian Hovde, Tøndel Kristin, Shapaval Volha, Kohler Achim
Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.
Department of Biological Sciences, University of Bergen, Bergen, Norway.
Commun Chem. 2022 Dec 22;5(1):175. doi: 10.1038/s42004-022-00792-3.
Infrared spectroscopy delivers abundant information about the chemical composition, as well as the structural and optical properties of intact samples in a non-destructive manner. We present a deep convolutional neural network which exploits all of this information and solves full-wave inverse scattering problems and thereby obtains the 3D optical, structural and chemical properties from infrared spectroscopic measurements of intact micro-samples. The proposed model encodes scatter-distorted infrared spectra and infers the distribution of the complex refractive index function of concentrically spherical samples, such as many biological cells. The approach delivers simultaneously the molecular absorption, sample morphology and effective refractive index in both the cell wall and interior from a single measured spectrum. The model is trained on simulated scatter-distorted spectra, where absorption in the distinct layers is simulated and the scatter-distorted spectra are estimated by analytic solutions of Maxwell's equations for samples of different sizes. This allows for essentially real-time deep learning-enabled infrared diffraction micro-tomography, for a large subset of biological cells.
红外光谱能够以非破坏性方式提供有关完整样品的化学成分、结构和光学特性的丰富信息。我们提出了一种深度卷积神经网络,该网络利用所有这些信息来解决全波逆散射问题,从而从完整微样品的红外光谱测量中获得三维光学、结构和化学特性。所提出的模型对散射失真的红外光谱进行编码,并推断同心球形样品(如许多生物细胞)的复折射率函数分布。该方法从单个测量光谱中同时提供细胞壁和细胞内部的分子吸收、样品形态以及有效折射率。该模型在模拟的散射失真光谱上进行训练,其中模拟了不同层中的吸收,并通过麦克斯韦方程组的解析解对不同尺寸样品的散射失真光谱进行估计。这使得对于大部分生物细胞而言,基本上能够实现实时的深度学习驱动的红外衍射显微断层成像。