Suppr超能文献

增强基于逻辑建模的细胞系特异性药物协同作用预测的策略。

Strategies to Enhance Logic Modeling-Based Cell Line-Specific Drug Synergy Prediction.

作者信息

Niederdorfer Barbara, Touré Vasundra, Vazquez Miguel, Thommesen Liv, Kuiper Martin, Lægreid Astrid, Flobak Åsmund

机构信息

Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.

Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.

出版信息

Front Physiol. 2020 Jul 28;11:862. doi: 10.3389/fphys.2020.00862. eCollection 2020.

Abstract

Discrete dynamical modeling shows promise in prioritizing drug combinations for screening efforts by reducing the experimental workload inherent to the vast numbers of possible drug combinations. We have investigated approaches to predict combination responses across different cancer cell lines using logic models generated from one generic prior-knowledge network representing 144 nodes covering major cancer signaling pathways. Cell-line specific models were configured to agree with baseline activity data from each unperturbed cell line. Testing against experimental data demonstrated a high number of true positive and true negative predictions, including also cell-specific responses. We demonstrate the possible enhancement of predictive capability of models by curation of literature knowledge further detailing subtle biologically founded signaling mechanisms in the model topology. model analysis pinpointed a subset of network nodes highly influencing model predictions. Our results indicate that the performance of logic models can be improved by focusing on high-influence node protein activity data for model configuration and that these nodes accommodate high information flow in the regulatory network.

摘要

离散动力学建模通过减少大量可能的药物组合所固有的实验工作量,在筛选药物组合的优先级方面显示出前景。我们研究了使用从一个表示涵盖主要癌症信号通路的144个节点的通用先验知识网络生成的逻辑模型来预测不同癌细胞系的联合反应的方法。细胞系特异性模型被配置为与每个未受干扰的细胞系的基线活性数据一致。与实验数据进行测试显示出大量的真阳性和真阴性预测,包括细胞特异性反应。我们通过整理文献知识进一步详细说明模型拓扑中微妙的基于生物学的信号传导机制,展示了模型预测能力的可能增强。模型分析确定了对模型预测有高度影响的网络节点子集。我们的结果表明,通过关注高影响节点蛋白活性数据进行模型配置,可以提高逻辑模型的性能,并且这些节点在调节网络中容纳高信息流。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1d5/7399174/9e124ac3b121/fphys-11-00862-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验