Suppr超能文献

通过逻辑建模预测胃癌细胞中的药物协同作用

Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling.

作者信息

Flobak Åsmund, Baudot Anaïs, Remy Elisabeth, Thommesen Liv, Thieffry Denis, Kuiper Martin, Lægreid Astrid

机构信息

Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, Marseille, France.

出版信息

PLoS Comput Biol. 2015 Aug 28;11(8):e1004426. doi: 10.1371/journal.pcbi.1004426. eCollection 2015 Aug.

Abstract

Discovery of efficient anti-cancer drug combinations is a major challenge, since experimental testing of all possible combinations is clearly impossible. Recent efforts to computationally predict drug combination responses retain this experimental search space, as model definitions typically rely on extensive drug perturbation data. We developed a dynamical model representing a cell fate decision network in the AGS gastric cancer cell line, relying on background knowledge extracted from literature and databases. We defined a set of logical equations recapitulating AGS data observed in cells in their baseline proliferative state. Using the modeling software GINsim, model reduction and simulation compression techniques were applied to cope with the vast state space of large logical models and enable simulations of pairwise applications of specific signaling inhibitory chemical substances. Our simulations predicted synergistic growth inhibitory action of five combinations from a total of 21 possible pairs. Four of the predicted synergies were confirmed in AGS cell growth real-time assays, including known effects of combined MEK-AKT or MEK-PI3K inhibitions, along with novel synergistic effects of combined TAK1-AKT or TAK1-PI3K inhibitions. Our strategy reduces the dependence on a priori drug perturbation experimentation for well-characterized signaling networks, by demonstrating that a model predictive of combinatorial drug effects can be inferred from background knowledge on unperturbed and proliferating cancer cells. Our modeling approach can thus contribute to preclinical discovery of efficient anticancer drug combinations, and thereby to development of strategies to tailor treatment to individual cancer patients.

摘要

发现高效的抗癌药物组合是一项重大挑战,因为对所有可能的组合进行实验测试显然是不可能的。最近通过计算预测药物组合反应的努力仍保留了这种实验搜索空间,因为模型定义通常依赖于大量的药物扰动数据。我们开发了一个动力学模型,该模型代表AGS胃癌细胞系中的细胞命运决定网络,其依据是从文献和数据库中提取的背景知识。我们定义了一组逻辑方程,概括了在处于基线增殖状态的细胞中观察到的AGS数据。使用建模软件GINsim,应用模型简化和模拟压缩技术来处理大型逻辑模型的巨大状态空间,并能够模拟特定信号抑制化学物质的成对应用。我们的模拟预测了21种可能组合中的5种组合具有协同生长抑制作用。在AGS细胞生长实时测定中证实了4种预测的协同作用,包括MEK-AKT或MEK-PI3K联合抑制的已知作用,以及TAK1-AKT或TAK1-PI3K联合抑制的新协同作用。我们的策略通过证明可以从未受干扰且处于增殖状态的癌细胞的背景知识中推断出预测组合药物效应的模型,从而减少了对特征明确的信号网络进行先验药物扰动实验的依赖。因此,我们的建模方法有助于高效抗癌药物组合的临床前发现,从而有助于制定针对个体癌症患者的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daea/4567168/42eae18f9fd0/pcbi.1004426.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验