Information and Navigation College, Air Force Engineering University, Xi'an, Shaanxi 710077, China.
Comput Intell Neurosci. 2020 Aug 11;2020:1492429. doi: 10.1155/2020/1492429. eCollection 2020.
Grid cells and place cells are important neurons in the animal brain. The information transmission between them provides the basis for the spatial representation and navigation of animals and also provides reference for the research on the autonomous navigation mechanism of intelligent agents. Grid cells are important information source of place cells. The supervised learning and unsupervised learning models can be used to simulate the generation of place cells from grid cell inputs. However, the existing models preset the firing characteristics of grid cell. In this paper, we propose a united generation model of grid cells and place cells. First, the visual place cells with nonuniform distribution generate the visual grid cells with regional firing field through feedforward network. Second, the visual grid cells and the self-motion information generate the united grid cells whose firing fields extend to the whole space through genetic algorithm. Finally, the visual place cells and the united grid cells generate the united place cells with uniform distribution through supervised fuzzy adaptive resonance theory (ART) network. Simulation results show that this model has stronger environmental adaptability and can provide reference for the research on spatial representation model and brain-inspired navigation mechanism of intelligent agents under the condition of nonuniform environmental information.
网格细胞和位置细胞是动物大脑中的重要神经元。它们之间的信息传递为动物的空间表示和导航提供了基础,也为智能体自主导航机制的研究提供了参考。网格细胞是位置细胞的重要信息源。监督学习和无监督学习模型可用于模拟从网格细胞输入生成位置细胞。然而,现有的模型预设了网格细胞的发射特性。在本文中,我们提出了一种网格细胞和位置细胞的联合生成模型。首先,具有非均匀分布的视觉位置细胞通过前馈网络生成具有区域发射场的视觉网格细胞。其次,视觉网格细胞和自身运动信息通过遗传算法生成其发射场扩展到整个空间的联合网格细胞。最后,视觉位置细胞和联合网格细胞通过监督模糊自适应共振理论 (ART) 网络生成具有均匀分布的联合位置细胞。仿真结果表明,该模型具有更强的环境适应性,可为非均匀环境信息下智能体的空间表示模型和脑启发式导航机制研究提供参考。