Suppr超能文献

新型双端重启随机游走算法在人类微生物-疾病关联预测中的应用。

Human Microbe-Disease Association Prediction by a Novel Double-Ended Random Walk with Restart.

机构信息

Department of Nuclear Medicine, Harbin Medical University Cancer Hospital, Harbin, China.

Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China.

出版信息

Biomed Res Int. 2020 Aug 10;2020:3978702. doi: 10.1155/2020/3978702. eCollection 2020.

Abstract

Microorganisms in the human body play a vital role in metabolism, immune defense, nutrient absorption, cancer control, and prevention of pathogen colonization. More and more biological and clinical studies have shown that the imbalance of microbial communities is closely related to the occurrence and development of various complex human diseases. Finding potential microbial-disease associations is critical for understanding the pathology of a few diseases and thus further improving disease diagnosis and prognosis. In this study, we proposed a novel computational model to predict disease-associated microbes. Specifically, we first constructed a heterogeneous interconnection network based on known microbe-disease associations deposited in a few databases, the similarity between diseases, and the similarity between microorganisms. We then predicted novel microbe-disease associations by a new method called the double-ended restart random walk model (DRWHMDA) implemented on the interconnection network. In addition, we performed case studies of colon cancer and asthma for further evaluation. The results indicate that 10 and 9 of the top 10 microorganisms predicted to be associated with colorectal cancer and asthma were validated by relevant literatures, respectively. Our method is expected to be effective in identifying disease-related microorganisms and will help to reveal the relationship between microorganisms and complex human diseases.

摘要

人体中的微生物在新陈代谢、免疫防御、营养吸收、癌症控制和防止病原体定植方面发挥着至关重要的作用。越来越多的生物学和临床研究表明,微生物群落的失衡与各种复杂人类疾病的发生和发展密切相关。寻找潜在的微生物-疾病关联对于了解一些疾病的病理机制至关重要,从而进一步改善疾病的诊断和预后。在本研究中,我们提出了一种新的计算模型来预测与疾病相关的微生物。具体来说,我们首先基于几个数据库中已有的微生物-疾病关联、疾病之间的相似性以及微生物之间的相似性,构建了一个异构的相互关联网络。然后,我们在该相互关联网络上使用一种名为双端重启随机游走模型(DRWHMDA)的新方法来预测新的微生物-疾病关联。此外,我们还进行了结肠癌和哮喘的案例研究,以进一步评估。结果表明,预测与结直肠癌和哮喘相关的前 10 种微生物中有 10 种和 9 种分别被相关文献验证。我们的方法有望有效识别与疾病相关的微生物,并有助于揭示微生物与复杂人类疾病之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d127/7439206/6ec4a1c9cdd4/BMRI2020-3978702.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验