Ramel C
Department of Genetic and Cellular Toxicology, Wallenberg Laboratory, University of Stockholm, Sweden.
Mutat Res. 1988 May-Aug;205(1-4):13-24. doi: 10.1016/0165-1218(88)90004-3.
Short-term testing has been performed and interpreted on the basis of correlation between these tests and animal carcinogenicity. This empirical approach has been the only feasible one, due to a lack of knowledge of the actual genetic endpoints of relevance in carcinogenicity. However, the rapidly growing information on genetic alterations actually involved in carcinogenicity and in particular activation of oncogenes, provides facts of basic importance for the strategy of short-term testing. The presently used sets of short-term tests focus on standard genetic endpoints, mainly point mutations and chromosomal aberrations. Little attention has been paid in that connection to other endpoints, which have been shown or suspected to play an important role in carcinogenicity. These endpoints include gene amplification, transpositions, hypomethylation, polygene mutations and recombinogenic effects. Furthermore, indirect effects, for instance via radical generation and an imbalance of the nucleotide pool, may be of great significance for the carcinogenic and cocarcinogenic effects of many chemicals. Modern genetic and molecular technology has opened entirely new prospects for identifying genetic alterations in tumours and in its turn these prospects should be taken advantage of in order to build up more sophisticated batteries of assays, adapted to the genetic endpoints actually demonstrated to be involved in cancer induction. Development of new assay systems in accordance with the elucidation of genetic alterations in carcinogenicity will probably constitute one of the most important areas in genetic toxicology in the future. From a regulatory point of view the prerequisite for a development in this direction will be a flexibility of the handling of questions concerning short-term testing also at a bureaucratic level.