Suppr超能文献

开发一种预后模型以识别初诊转移性鼻咽癌的合适根治性放疗候选者:一项真实世界研究。

Development of a Prognostic Model to Identify the Suitable Definitive Radiation Therapy Candidates in de Novo Metastatic Nasopharyngeal Carcinoma: A Real-World Study.

机构信息

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China; Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China.

Johns Hopkins University School of Medicine, Baltimore, Maryland.

出版信息

Int J Radiat Oncol Biol Phys. 2021 Jan 1;109(1):120-130. doi: 10.1016/j.ijrobp.2020.08.045. Epub 2020 Aug 24.

Abstract

PURPOSE

We aimed to develop an accurate prognostic model to identify suitable candidates for definitive radiation therapy (DRT) in addition to palliative chemotherapy (PCT) among patients with de novo metastatic nasopharyngeal carcinoma (mNPC).

METHODS AND MATERIALS

Patients with de novo mNPC who received first-line PCT with or without DRT were included. Overall survival for patients who received PCT alone versus PCT plus DRT was estimated using inverse probability of treatment weighting-adjusted survival analyses. We developed and validated a prognostic model to predict survival and stratify risks in de novo mNPC. A model-based trees approach was applied to estimate stratified treatment effects using prognostic scores obtained from the prognostic model and to identify suitable DRT candidates. Dominance analysis was used to determine the relative importance of each predictor of receiving DRT.

RESULTS

A total of 460 patients were enrolled; 244 received PCT plus DRT and 216 received PCT alone. The 6-month conditional landmark, inverse probability of treatment weighting-adjusted Cox regression analysis showed that PCT plus DRT was associated with a significant survival benefit (hazard ratio: 0.516; 95% confidence interval, 0.403-0.660; P < .001). A prognostic model based on 5 independent prognostic factors, including serum lactate dehydrogenase, number of metastatic sites, presence of liver metastasis, posttreatment Epstein-Barr virus DNA level, and response of metastases to chemotherapy was developed and subsequently validated. Prognostic scores obtained from the prognostic model were used for risk stratification and efficacy estimation. High-risk patients identified using the proposed model would not benefit from additional DRT, whereas low-risk patients experienced significant survival benefits. Socioeconomic factors, including insurance status and education level, played an important role in receipt of DRT.

CONCLUSIONS

Additional DRT after PCT was associated with increased overall survival in patients with de novo mNPC, especially low-risk patients identified with a newly developed prognostic model.

摘要

目的

我们旨在开发一种准确的预后模型,以确定初诊转移性鼻咽癌(mNPC)患者在接受姑息性化疗(PCT)之外是否适合接受根治性放疗(DRT)。

方法和材料

纳入接受一线 PCT 联合或不联合 DRT 的初诊 mNPC 患者。采用逆概率治疗权重调整后的生存分析估计仅接受 PCT 与接受 PCT 联合 DRT 的患者的总生存情况。我们开发并验证了一种预测生存和分层初诊 mNPC 风险的预后模型。应用基于模型的树方法,根据预后模型获得的预后评分估计分层治疗效果,并确定合适的 DRT 候选者。采用优势分析确定接受 DRT 的每个预测因素的相对重要性。

结果

共纳入 460 例患者,244 例接受 PCT 联合 DRT,216 例接受 PCT 单药治疗。6 个月条件性 landmark 逆概率治疗权重调整后的 Cox 回归分析显示,PCT 联合 DRT 与生存显著获益相关(风险比:0.516;95%置信区间,0.403-0.660;P<0.001)。基于 5 个独立预后因素(包括血清乳酸脱氢酶、转移灶数量、肝转移存在、治疗后 EBV-DNA 水平和转移灶对化疗的反应)建立了预后模型,并随后进行了验证。从预后模型中获得的预后评分用于风险分层和疗效估计。使用所提出的模型识别的高风险患者不会从额外的 DRT 中获益,而低风险患者则显著获益。社会经济因素,包括保险状况和教育水平,在接受 DRT 方面发挥了重要作用。

结论

PCT 后加用 DRT 可提高初诊 mNPC 患者的总生存率,特别是使用新开发的预后模型识别的低危患者。

相似文献

引用本文的文献

本文引用的文献

2
Nasopharyngeal carcinoma.鼻咽癌。
Lancet. 2019 Jul 6;394(10192):64-80. doi: 10.1016/S0140-6736(19)30956-0. Epub 2019 Jun 6.
6
Individual treatment effect prediction for amyotrophic lateral sclerosis patients.预测肌萎缩侧索硬化症患者的个体治疗效果。
Stat Methods Med Res. 2018 Oct;27(10):3104-3125. doi: 10.1177/0962280217693034. Epub 2017 Feb 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验