Chen Xiaowan, Dong Zhenyu, Liu Jinbao, Wang Huanyuan, Zhang Yang, Chen Tianqing, Du Yichun, Shao Li, Xie Jiancang
Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, China.
Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, China; Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, Shaanxi 710075, China.
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Dec 15;243:118786. doi: 10.1016/j.saa.2020.118786. Epub 2020 Aug 3.
The precise and nondestructive detection of leaf chlorophyll content is one key to assessing the health status of crops. The objective of this study was to develop a precision method for determining the leaf chlorophyll content in rape. A genetic algorithm (GA) combined with the partial least squares (PLS) method was used to establish a chlorophyll content PLS regression estimation model based on screening the characteristic spectral regions of chlorophyll. The results show that the characteristic bands of chlorophyll in rape are 510-535, 675-695, 905-965, 1025-1225, 1165-1175, 1295-1385, 1495-1765, 1875-1895, 1970-2145, and 2179-2185 nm. Based on the characteristics of each input spectrum, the Rv and RPD values of the best model reached 0.97 and 5.41, respectively. This represented an increase of 0.20 and 3.42, respectively, over these values for the original full-spectrum model. The best model also achieved an RMSEP of 2.63 mg g, which was only 3.59% of the total sample average and was 3.78 mg g less than that of the original full-spectrum model. Therefore, the best model provided good prediction accuracy for the chlorophyll content of rape. The model based on the Log (1/R) spectral transformation performed best in terms of prediction accuracy. The genetic algorithm combined with the partial least squares method (GA-PLS) can effectively screen the characteristic bands of rape chlorophyll, reduce the number of variables in the model, and produce high estimation accuracy.
精确无损地检测叶片叶绿素含量是评估作物健康状况的关键之一。本研究的目的是开发一种精确测定油菜叶片叶绿素含量的方法。采用遗传算法(GA)结合偏最小二乘法(PLS),基于筛选叶绿素特征光谱区域,建立叶绿素含量PLS回归估计模型。结果表明,油菜中叶绿素的特征波段为510 - 535、675 - 695、905 - 965、1025 - 1225、1165 - 1175、1295 - 1385、1495 - 1765、1875 - 1895、1970 - 2145和2179 - 2185纳米。基于各输入光谱的特征,最佳模型的Rv和RPD值分别达到0.97和5.41。与原始全光谱模型相比,这两个值分别提高了0.20和3.42。最佳模型的RMSEP为2.63毫克/克,仅占总样本平均值的3.59%,比原始全光谱模型低3.78毫克/克。因此,最佳模型对油菜叶绿素含量具有良好的预测精度。基于Log(1/R)光谱变换的模型在预测精度方面表现最佳。遗传算法结合偏最小二乘法(GA-PLS)能够有效筛选油菜叶绿素的特征波段,减少模型中的变量数量,并产生较高的估计精度。