Suppr超能文献

深度学习算法在旋转机械智能诊断中的应用:一个开源基准研究。

Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study.

机构信息

School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.

出版信息

ISA Trans. 2020 Dec;107:224-255. doi: 10.1016/j.isatra.2020.08.010. Epub 2020 Aug 19.

Abstract

Rotating machinery intelligent diagnosis based on deep learning (DL) has gone through tremendous progress, which can help reduce costly breakdowns. However, different datasets and hyper-parameters are recommended to be used, and few open source codes are publicly available, resulting in unfair comparisons and ineffective improvement. To address these issues, we perform a comprehensive evaluation of four models, including multi-layer perception (MLP), auto-encoder (AE), convolutional neural network (CNN), and recurrent neural network (RNN), with seven datasets to provide a benchmark study. We first gather nine publicly available datasets and give a comprehensive benchmark study of DL-based models with two data split strategies, five input formats, three normalization methods, and four augmentation methods. Second, we integrate the whole evaluation codes into a code library and release it to the public for better comparisons. Third, we use specific-designed cases to point out the existing issues, including class imbalance, generalization ability, interpretability, few-shot learning, and model selection. Finally, we release a unified code framework for comparing and testing models fairly and quickly, emphasize the importance of open source codes, provide the baseline accuracy (a lower bound), and discuss existing issues in this field. The code library is available at: https://github.com/ZhaoZhibin/DL-based-Intelligent-Diagnosis-Benchmark.

摘要

基于深度学习(DL)的旋转机械智能诊断已经取得了巨大的进展,可以帮助减少昂贵的故障。然而,建议使用不同的数据集和超参数,并且很少有开源代码可供公开使用,这导致了不公平的比较和无效的改进。为了解决这些问题,我们对四个模型(包括多层感知器(MLP)、自编码器(AE)、卷积神经网络(CNN)和递归神经网络(RNN))进行了全面评估,使用了七个数据集,以提供基准研究。我们首先收集了九个公开可用的数据集,并使用两种数据分割策略、五种输入格式、三种归一化方法和四种增强方法,对基于 DL 的模型进行了全面的基准研究。其次,我们将整个评估代码集成到一个代码库中,并将其发布给公众,以便更好地进行比较。第三,我们使用特定设计的案例指出了存在的问题,包括类别不平衡、泛化能力、可解释性、少样本学习和模型选择。最后,我们发布了一个统一的代码框架,用于公平、快速地比较和测试模型,强调了开源代码的重要性,提供了基线准确性(下限),并讨论了该领域的现有问题。代码库可在以下网址获得:https://github.com/ZhaoZhibin/DL-based-Intelligent-Diagnosis-Benchmark。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验