Suppr超能文献

YConvFormer:一种用于时频融合的齿轮箱故障诊断的轻量级且鲁棒的Transformer

YConvFormer: A Lightweight and Robust Transformer for Gearbox Fault Diagnosis with Time-Frequency Fusion.

作者信息

Peng Yihang, Zhang Jianjie, Liu Songpeng, Zhang Mingyang, Guo Yichen

机构信息

College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China.

College of Software, Xinjiang University, Urumqi 830091, China.

出版信息

Sensors (Basel). 2025 Aug 7;25(15):4862. doi: 10.3390/s25154862.

Abstract

This paper addresses the core contradiction in fault diagnosis of gearboxes in heavy-duty equipment, where it is challenging to achieve both lightweight and robustness in dynamic industrial environments. Current diagnostic algorithms often struggle with balancing computational efficiency and diagnostic accuracy, particularly in noisy and variable operating conditions. Many existing methods either rely on complex architectures that are computationally expensive or oversimplified models that lack robustness to environmental interference. A novel, lightweight, and robust diagnostic network, YConvFormer, is proposed. Firstly, a time-frequency joint input channel is introduced, which integrates time-domain waveforms and frequency-domain spectrums at the input layer. It incorporates an Efficient Channel Attention mechanism with dynamic weighting to filter noise in specific frequency bands, suppressing high-frequency noise and enhancing the complementary relationship between time-frequency features. Secondly, an axial-enhanced broadcast attention mechanism is proposed. It models long-range temporal dependencies through spatial axial modeling, expanding the receptive field of shock features, while channel axial reinforcement strengthens the interaction of harmonics across frequency bands. This mechanism refines temporal modeling with minimal computation. Finally, the YConvFormer lightweight architecture is proposed, which combines shallow feature processing with global-local modeling, significantly reducing computational load. The experimental results on the XJTU and SEU gearbox datasets show that the proposed method improves the average accuracy by 6.55% and 19.58%, respectively, compared to the best baseline model, LiteFormer.

摘要

本文解决了重型装备中齿轮箱故障诊断的核心矛盾,即在动态工业环境中实现轻量化和鲁棒性具有挑战性。当前的诊断算法往往难以平衡计算效率和诊断准确性,尤其是在噪声和变化的运行条件下。许多现有方法要么依赖于计算成本高昂的复杂架构,要么依赖于对环境干扰缺乏鲁棒性的过于简化的模型。本文提出了一种新颖、轻量化且鲁棒的诊断网络YConvFormer。首先,引入了一个时频联合输入通道,该通道在输入层整合了时域波形和频域频谱。它结合了具有动态加权的高效通道注意力机制,以过滤特定频带中的噪声,抑制高频噪声并增强时频特征之间的互补关系。其次,提出了一种轴向增强广播注意力机制。它通过空间轴向建模对长时依赖关系进行建模,扩展冲击特征的感受野,同时通道轴向增强加强了跨频带谐波的相互作用。该机制以最小的计算量优化时间建模。最后,提出了YConvFormer轻量化架构,它将浅层特征处理与全局-局部建模相结合,显著降低了计算负荷。在XJTU和SEU齿轮箱数据集上的实验结果表明,与最佳基线模型LiteFormer相比,所提方法的平均准确率分别提高了6.55%和19.58%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af04/12349192/0a6cea963b88/sensors-25-04862-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验