Suppr超能文献

利用具有视网膜病变信息的多模态深度学习架构来检测糖尿病性视网膜病变。

Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy.

机构信息

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan.

Institute of Data Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan.

出版信息

Transl Vis Sci Technol. 2020 Jul 16;9(2):41. doi: 10.1167/tvst.9.2.41. eCollection 2020 Jul.

Abstract

PURPOSE

To improve disease severity classification from fundus images using a hybrid architecture with symptom awareness for diabetic retinopathy (DR).

METHODS

We used 26,699 fundus images of 17,834 diabetic patients from three Taiwanese hospitals collected in 2007 to 2018 for DR severity classification. Thirty-seven ophthalmologists verified the images using lesion annotation and severity classification as the ground truth. Two deep learning fusion architectures were proposed: late fusion, which combines lesion and severity classification models in parallel using a postprocessing procedure, and two-stage early fusion, which combines lesion detection and classification models sequentially and mimics the decision-making process of ophthalmologists. Messidor-2 was used with 1748 images to evaluate and benchmark the performance of the architecture. The primary evaluation metrics were classification accuracy, weighted κ statistic, and area under the receiver operating characteristic curve (AUC).

RESULTS

For hospital data, a hybrid architecture achieved a good detection rate, with accuracy and weighted κ of 84.29% and 84.01%, respectively, for five-class DR grading. It also classified the images of early stage DR more accurately than conventional algorithms. The Messidor-2 model achieved an AUC of 97.09% in referral DR detection compared to AUC of 85% to 99% for state-of-the-art algorithms that learned from a larger database.

CONCLUSIONS

Our hybrid architectures strengthened and extracted characteristics from DR images, while improving the performance of DR grading, thereby increasing the robustness and confidence of the architectures for general use.

TRANSLATIONAL RELEVANCE

The proposed fusion architectures can enable faster and more accurate diagnosis of various DR pathologies than that obtained in current manual clinical practice.

摘要

目的

利用具有症状意识的混合架构提高眼底图像的疾病严重程度分类,用于糖尿病视网膜病变(DR)。

方法

我们使用了 2007 年至 2018 年间来自台湾三家医院的 17834 名糖尿病患者的 26699 张眼底图像,用于 DR 严重程度分类。37 名眼科医生使用病变标注和严重程度分类作为ground truth 对图像进行验证。我们提出了两种深度学习融合架构:晚期融合,通过后处理过程并行组合病变和严重程度分类模型;两阶段早期融合,顺序组合病变检测和分类模型,模拟眼科医生的决策过程。我们使用 Messidor-2 中的 1748 张图像来评估和基准测试架构的性能。主要评估指标是分类准确率、加权κ统计量和受试者工作特征曲线下的面积(AUC)。

结果

对于医院数据,混合架构实现了较高的检测率,对于五级 DR 分级,准确率和加权κ分别为 84.29%和 84.01%。它还比传统算法更准确地分类早期 DR 图像。与从更大的数据库中学习的最先进算法的 AUC 为 85%至 99%相比,Messidor-2 模型在转诊 DR 检测中的 AUC 达到了 97.09%。

结论

我们的混合架构增强并提取了 DR 图像的特征,同时提高了 DR 分级的性能,从而提高了架构的稳健性和可信度,使其更适用于一般用途。

翻译

医学 360

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66d5/7424907/17ddb8a6abaf/tvst-9-2-41-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验