Suppr超能文献

基于眼底照片的深度学习算法在糖尿病视网膜病变检测中的应用。

Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy.

机构信息

Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, 600006, India.

Vision Research Foundation, Chennai, 600006, India.

出版信息

Eye (Lond). 2019 Jan;33(1):97-109. doi: 10.1038/s41433-018-0269-y. Epub 2018 Nov 6.

Abstract

Remarkable advances in biomedical research have led to the generation of large amounts of data. Using artificial intelligence, it has become possible to extract meaningful information from large volumes of data, in a shorter frame of time, with very less human interference. In effect, convolutional neural networks (a deep learning method) have been taught to recognize pathological lesions from images. Diabetes has high morbidity, with millions of people who need to be screened for diabetic retinopathy (DR). Deep neural networks offer a great advantage of screening for DR from retinal images, in improved identification of DR lesions and risk factors for diseases, with high accuracy and reliability. This review aims to compare the current evidences on various deep learning models for diagnosis of diabetic retinopathy (DR).

摘要

生物医学研究的显著进展带来了大量数据的产生。通过人工智能,我们已经可以在更短的时间内,以更少的人为干预,从大量数据中提取有意义的信息。实际上,卷积神经网络(一种深度学习方法)已经被教会从图像中识别病理损伤。糖尿病发病率很高,有数百万需要筛查糖尿病视网膜病变(DR)的人群。深度神经网络在从视网膜图像筛查 DR 方面具有很大的优势,可以更准确、可靠地识别 DR 病变和疾病的危险因素。本综述旨在比较目前各种用于诊断糖尿病视网膜病变(DR)的深度学习模型的证据。

相似文献

引用本文的文献

本文引用的文献

4
SparkGIS: Efficient Comparison and Evaluation of Algorithm Results in Tissue Image Analysis Studies.SparkGIS:组织图像分析研究中算法结果的高效比较与评估
Biomed Data Manag Graph Online Querying (2015). 2016;9579:134-146. doi: 10.1007/978-3-319-41576-5_10. Epub 2016 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验