Suppr超能文献

影像学脊柱侧弯角度评估:基于样条的测量方法比传统 COBB 方法具有更高的可靠性。

Radiographic scoliosis angle estimation: spline-based measurement reveals superior reliability compared to traditional COBB method.

机构信息

Department for Orthopaedics and Traumatology, University Comprehensive Spine Center, University Hospital Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Faculty of Informatics/Mathematics, HTW Dresden, Friedrich-List-Platz 1, 01069, Dresden, Germany.

出版信息

Eur Spine J. 2021 Mar;30(3):676-685. doi: 10.1007/s00586-020-06577-3. Epub 2020 Aug 27.

Abstract

INTRODUCTION AND OBJECTIVE

Although being standard for scoliosis curve size estimation, COBB angle measurement is well known to be inaccurate, due to a high interobserver variance in end vertebra selection and end plate contour delineation. We propose a stepwise improvement by using a spline constructed from vertebra centroids to resemble spinal curve characteristics more closely. To enhance precision even further, a neural net was trained to detect the centroids automatically.

MATERIALS & METHODS: Vertebra centroids in AP spinal X-ray images of varying quality from 551 scoliosis patients were manually labeled by 4 investigators. With these inputs, splines were generated and the computed curve sizes were compared to the manually measured COBB angles and to the curve estimation obtained from the neural net.

RESULTS

Splines achieved a higher interobserver correlation of 0.92-0.95 compared to manual COBB measurements (0.83-0.92) and showed 1.5-2 times less variance, depending on the anatomic region. This translates into an average of 1° of interobserver measurement deviation for spline-based curve estimation compared to 3°-8° for COBB measurements. The neural net was even more precise and achieved mean deviations below 0.5°.

CONCLUSION

In conclusion, our data suggest an advantage of spline-based automated measuring systems, so further investigations are warranted to abandon manual COBB measurements.

摘要

简介与目的

尽管 Cobb 角测量被认为是评估脊柱侧弯曲线大小的标准方法,但由于在选择终椎和终板轮廓描绘方面存在观察者间的高度变异性,因此该方法的准确性较差。我们提出了一种逐步改进的方法,即使用样条曲线来更接近地模拟脊柱曲线特征,样条曲线是由椎体中心点构建的。为了进一步提高精度,我们还训练了一个神经网络来自动检测中心点。

材料与方法

从 551 例脊柱侧弯患者的 AP 脊柱 X 射线图像中手动标记了 4 名研究人员的椎体中心点。根据这些输入,生成了样条曲线,并将计算出的曲线大小与手动测量的 Cobb 角度以及从神经网络获得的曲线估计进行了比较。

结果

与手动 Cobb 测量(0.83-0.92)相比,样条曲线的观察者间相关性更高,达到 0.92-0.95,并且表现出 1.5-2 倍的变异性,具体取决于解剖区域。这转化为基于样条曲线的曲线估计的观察者间测量偏差平均为 1°,而 Cobb 测量的偏差为 3°-8°。神经网络甚至更精确,平均偏差低于 0.5°。

结论

总之,我们的数据表明基于样条曲线的自动测量系统具有优势,因此需要进一步研究来放弃手动 Cobb 测量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验