Suppr超能文献

用于全脊柱X光片精确地标识别和结构评估的深度学习方法

Deep Learning Method for Precise Landmark Identification and Structural Assessment of Whole-Spine Radiographs.

作者信息

Noh Sung Hyun, Lee Gaeun, Bae Hyun-Jin, Han Ju Yeon, Son Su Jeong, Kim Deok, Park Jeong Yeon, Choi Seung Kyeong, Cho Pyung Goo, Kim Sang Hyun, Yuh Woon Tak, Lee Su Hun, Park Bumsoo, Kim Kwang-Ryeol, Kim Kyoung-Tae, Ha Yoon

机构信息

Department of Neurosurgery, Ajou University College of Medicine, Suwon 16499, Republic of Korea.

Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.

出版信息

Bioengineering (Basel). 2024 May 11;11(5):481. doi: 10.3390/bioengineering11050481.

Abstract

This study measured parameters automatically by marking the point for measuring each parameter on whole-spine radiographs. Between January 2020 and December 2021, 1017 sequential lateral whole-spine radiographs were retrospectively obtained. Of these, 819 and 198 were used for training and testing the performance of the landmark detection model, respectively. To objectively evaluate the program's performance, 690 whole-spine radiographs from four other institutions were used for external validation. The combined dataset comprised radiographs from 857 female and 850 male patients (average age 42.2 ± 27.3 years; range 20-85 years). The landmark localizer showed the highest accuracy in identifying cervical landmarks (median error 1.5-2.4 mm), followed by lumbosacral landmarks (median error 2.1-3.0 mm). However, thoracic landmarks displayed larger localization errors (median 2.4-4.3 mm), indicating slightly reduced precision compared with the cervical and lumbosacral regions. The agreement between the deep learning model and two experts was good to excellent, with intraclass correlation coefficient values >0.88. The deep learning model also performed well on the external validation set. There were no statistical differences between datasets in all parameters, suggesting that the performance of the artificial intelligence model created was excellent. The proposed automatic alignment analysis system identified anatomical landmarks and positions of the spine with high precision and generated various radiograph imaging parameters that had a good correlation with manual measurements.

摘要

本研究通过在全脊柱X光片上标记每个参数的测量点来自动测量参数。在2020年1月至2021年12月期间,回顾性获取了1017张连续的脊柱侧位全脊柱X光片。其中,819张和198张分别用于训练和测试地标检测模型的性能。为了客观评估该程序的性能,使用了来自其他四个机构的690张全脊柱X光片进行外部验证。合并后的数据集包括来自857名女性和850名男性患者的X光片(平均年龄42.2±27.3岁;范围20 - 85岁)。地标定位器在识别颈椎地标方面显示出最高的准确性(中位误差1.5 - 2.4毫米),其次是腰骶椎地标(中位误差2.1 - 3.0毫米)。然而,胸椎地标显示出较大的定位误差(中位误差2.4 - 4.3毫米),表明与颈椎和腰骶椎区域相比,精度略有降低。深度学习模型与两位专家之间的一致性良好到优秀,组内相关系数值>0.88。深度学习模型在外部验证集上也表现良好。所有参数在数据集之间没有统计学差异,表明所创建的人工智能模型性能优异。所提出的自动对齐分析系统能够高精度地识别脊柱的解剖地标和位置,并生成与手动测量具有良好相关性的各种X光片成像参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7c8/11117576/93ae8d0a986d/bioengineering-11-00481-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验