Suppr超能文献

通过原子转移自由基聚合(ATRP)、可逆加成-断裂链转移聚合(RAFT)或开环易位聚合(ROMP)的“从接枝”法制备生物分子-聚合物共轭物。

Preparation of Biomolecule-Polymer Conjugates by Grafting-From Using ATRP, RAFT, or ROMP.

作者信息

Messina Marco S, Messina Kathryn M M, Bhattacharya Arvind, Montgomery Hayden R, Maynard Heather D

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States.

California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States.

出版信息

Prog Polym Sci. 2020 Jan;100. doi: 10.1016/j.progpolymsci.2019.101186. Epub 2019 Nov 18.

Abstract

Biomolecule-polymer conjugates are constructs that take advantage of the functional or otherwise beneficial traits inherent to biomolecules and combine them with synthetic polymers possessing specially tailored properties. The rapid development of novel biomolecule-polymer conjugates based on proteins, peptides, or nucleic acids has ushered in a variety of unique materials, which exhibit functional attributes including thermo-responsiveness, exceptional stability, and specialized specificity. Key to the synthesis of new biomolecule-polymer hybrids is the use of controlled polymerization techniques coupled with either grafting-from, grafting-to, or grafting-through methodology, each of which exhibit distinct advantages and/or disadvantages. In this review, we present recent progress in the development of biomolecule-polymer conjugates with a focus on works that have detailed the use of grafting-from methods employing ATRP, RAFT, or ROMP.

摘要

生物分子-聚合物共轭物是利用生物分子固有的功能或其他有益特性,并将其与具有特殊定制性质的合成聚合物相结合的构建体。基于蛋白质、肽或核酸的新型生物分子-聚合物共轭物的快速发展带来了多种独特材料,这些材料具有热响应性、卓越稳定性和特殊特异性等功能特性。合成新型生物分子-聚合物杂化物的关键在于使用可控聚合技术,并结合从接枝、到接枝或通过接枝方法,每种方法都有其独特的优点和/或缺点。在本综述中,我们介绍了生物分子-聚合物共轭物开发的最新进展,重点关注详细阐述采用原子转移自由基聚合(ATRP)、可逆加成-断裂链转移聚合(RAFT)或开环易位聚合(ROMP)的从接枝方法应用的研究工作。

相似文献

1
Preparation of Biomolecule-Polymer Conjugates by Grafting-From Using ATRP, RAFT, or ROMP.
Prog Polym Sci. 2020 Jan;100. doi: 10.1016/j.progpolymsci.2019.101186. Epub 2019 Nov 18.
2
Controlled Radical Polymerization as an Enabling Approach for the Next Generation of Protein-Polymer Conjugates.
Acc Chem Res. 2016 Sep 20;49(9):1777-85. doi: 10.1021/acs.accounts.6b00258. Epub 2016 Sep 2.
3
Two-distinct polymer ubiquitin conjugates by photochemical grafting-from.
Macromol Chem Phys. 2021 Jul;222(14). doi: 10.1002/macp.202100091. Epub 2021 May 29.
4
Proteins as Initiators of Controlled Radical Polymerization: Grafting-from via ATRP and RAFT.
ACS Macro Lett. 2012 Jan 17;1(1):141-145. doi: 10.1021/mz200176g. Epub 2011 Dec 5.
5
Polymerization-Induced Self-Assembly: An Emerging Tool for Generating Polymer-Based Biohybrid Nanostructures.
Small. 2023 May;19(18):e2207457. doi: 10.1002/smll.202207457. Epub 2023 Feb 3.
6
Biomolecule-functionalized polymer brushes.
Chem Soc Rev. 2013 Apr 21;42(8):3394-426. doi: 10.1039/c2cs35453e.
8
Site-Specific Conjugation of Polymers to Proteins.
Biomacromolecules. 2018 Jun 11;19(6):1804-1825. doi: 10.1021/acs.biomac.8b00248. Epub 2018 May 3.
10
Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates.
Methods Enzymol. 2017;590:347-380. doi: 10.1016/bs.mie.2016.12.005. Epub 2017 Feb 16.

引用本文的文献

2
Red Light-Driven, Oxygen-Tolerant RAFT Polymerization Enabled by Methylene Blue.
J Am Chem Soc. 2025 Sep 3;147(35):32096-32109. doi: 10.1021/jacs.5c10541. Epub 2025 Aug 21.
3
Site-Specific Polymer-Protein-Polymer Conjugates for the Preparation of Dual Responsive Multilayer Nanoparticles.
Small. 2025 Apr;21(14):e2500531. doi: 10.1002/smll.202500531. Epub 2025 Mar 4.
5
6
Beyond , Pharmaceutical Molecule Production in Cell-Free Systems and the Use of Noncanonical Amino Acids Therein.
Chem Rev. 2025 Feb 12;125(3):1303-1331. doi: 10.1021/acs.chemrev.4c00126. Epub 2025 Jan 22.
8
Controlled Synthesis of Bioderived Poly(limonene carbonate)-Oligolysine Hybrid Macromolecules.
ACS Macro Lett. 2024 Oct 15;13(10):1332-1337. doi: 10.1021/acsmacrolett.4c00461. Epub 2024 Sep 19.
9
Organic nanoparticles with tunable size and rigidity by hyperbranching and cross-linking using microemulsion ATRP.
Proc Natl Acad Sci U S A. 2024 Jul 16;121(29):e2406337121. doi: 10.1073/pnas.2406337121. Epub 2024 Jul 10.
10
Aqueous photo-RAFT polymerization under ambient conditions: synthesis of protein-polymer hybrids in open air.
Chem Sci. 2024 May 24;15(25):9742-9755. doi: 10.1039/d4sc01409j. eCollection 2024 Jun 26.

本文引用的文献

1
Stability of Trithiocarbonate RAFT Agents Containing Both a Cyano and a Carboxylic Acid Functional Group.
ACS Macro Lett. 2017 Mar 21;6(3):287-291. doi: 10.1021/acsmacrolett.7b00100. Epub 2017 Mar 7.
2
ROMPISA: Ring-Opening Metathesis Polymerization-Induced Self-Assembly.
ACS Macro Lett. 2017 Sep 19;6(9):925-929. doi: 10.1021/acsmacrolett.7b00408. Epub 2017 Aug 15.
3
Preparation of Well-Defined Polymers and DNA-Polymer Bioconjugates via Small-Volume eATRP in the Presence of Air.
ACS Macro Lett. 2019 May 21;8(5):603-609. doi: 10.1021/acsmacrolett.9b00159. Epub 2019 May 6.
4
Grafting-From Proteins Using Metal-Free PET-RAFT Polymerizations under Mild Visible-Light Irradiation.
ACS Macro Lett. 2017 Apr 18;6(4):452-457. doi: 10.1021/acsmacrolett.7b00140. Epub 2017 Apr 4.
5
Protein ROMP: Aqueous Graft-from Ring-Opening Metathesis Polymerization.
ACS Macro Lett. 2015 Sep 15;4(9):969-973. doi: 10.1021/acsmacrolett.5b00497. Epub 2015 Aug 25.
6
Photoinduced Metal-Free Atom Transfer Radical Polymerization of Acrylonitrile.
ACS Macro Lett. 2015 Feb 17;4(2):192-196. doi: 10.1021/mz500834g. Epub 2015 Jan 20.
7
Dibromomaleimide End Functional Polymers by RAFT Polymerization Without the Need of Protecting Groups.
ACS Macro Lett. 2012 Jan 17;1(1):222-226. doi: 10.1021/mz200164x. Epub 2011 Dec 23.
8
ATRP under Biologically Relevant Conditions: Grafting from a Protein.
ACS Macro Lett. 2012 Jan 17;1(1):6-10. doi: 10.1021/mz200020c. Epub 2011 Nov 9.
9
Proteins as Initiators of Controlled Radical Polymerization: Grafting-from via ATRP and RAFT.
ACS Macro Lett. 2012 Jan 17;1(1):141-145. doi: 10.1021/mz200176g. Epub 2011 Dec 5.
10
Tertiary Structure-Based Prediction of How ATRP Initiators React with Proteins.
ACS Biomater Sci Eng. 2017 Sep 11;3(9):2086-2097. doi: 10.1021/acsbiomaterials.7b00281. Epub 2017 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验