Suppr超能文献

基于四元数的并行特征提取:利用薄层色谱-表面增强拉曼光谱传感拓展定量分析的视野。

Quaternion-based Parallel Feature Extraction: Extending the Horizon of Quantitative Analysis using TLC-SERS Sensing.

作者信息

Zhao Yong, Tan Ailing, Squire Kenny, Sivashanmugan Kundan, Wang Alan X

机构信息

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA.

School of Electrical Engineering, The Key Laboratory of Measurement Technology and Instrumentation of Hebei Province, Yanshan University, Qinhuangdao, Hebei 066004, P.R. China.

出版信息

Sens Actuators B Chem. 2019 Nov 15;299. doi: 10.1016/j.snb.2019.126902. Epub 2019 Aug 3.

Abstract

Quantitative analysis using thin-layer chromatography coupled in tandem with surface-enhanced Raman scattering (TLC-SERS) still remains a grand challenge due to many uncontrollable variations during the TLC developing process and the random nature of the SERS substrates. Traditional chemometric methods solve this problem by sampling multiple SERS spectra in the sensing spot and then conducting statistical analysis of the SERS signals to mitigate the variation of quantitative analysis, while still ignoring the spatial distribution of the target species and the correlation among the multiple sampling points. In this paper, we proposed for the first time a parallel feature extraction and fusion method based on quaternion signal processing techniques, which can enable quantitative analysis using recently established TLC-SERS techniques. By marking three deterministic sampling points, we recorded spatially correlated SERS spectra to constitute an integral representation model of triple-spectra by a pure quaternion matrix. Quaternion principal component analysis (QPCA) was utilized for features extraction and followed by feature crossing among the quaternion principal components to obtain final fusion spectral feature vectors. Support vector regression (SVR) was then used to establish the quantitative model of melamine-contaminated milk samples with seven concentrations (1ppm to 250ppm). Compared with traditional TLC-SERS analysis methods, QPCA method significantly improved the accuracy of quantification by reaching only 7% and 2% quantization errors at 20 and 105 ppm concentration. Validation testing based on reasonable amount of statistic measurement results showed consistently smaller measurement errors and variance, which proved the effectiveness of QPCA method for TLC-SERS based quantitative sensing applications.

摘要

由于薄层色谱(TLC)展开过程中存在许多无法控制的变化以及表面增强拉曼散射(SERS)底物的随机性,使用薄层色谱与表面增强拉曼散射联用(TLC-SERS)进行定量分析仍然是一个巨大的挑战。传统的化学计量方法通过在传感点对多个SERS光谱进行采样,然后对SERS信号进行统计分析来解决这个问题,以减轻定量分析的变化,但仍然忽略了目标物种的空间分布以及多个采样点之间的相关性。在本文中,我们首次提出了一种基于四元数信号处理技术的并行特征提取和融合方法,该方法能够利用最近建立的TLC-SERS技术进行定量分析。通过标记三个确定性采样点,我们记录了空间相关的SERS光谱,以由纯四元数矩阵构成三光谱的整体表示模型。利用四元数主成分分析(QPCA)进行特征提取,然后在四元数主成分之间进行特征交叉以获得最终的融合光谱特征向量。然后使用支持向量回归(SVR)建立了具有七种浓度(1ppm至250ppm)的三聚氰胺污染牛奶样品的定量模型。与传统的TLC-SERS分析方法相比,QPCA方法在20ppm和105ppm浓度下的量化误差仅为7%和2%,显著提高了定量的准确性。基于合理数量的统计测量结果的验证测试表明,测量误差和方差始终较小,这证明了QPCA方法在基于TLC-SERS的定量传感应用中的有效性。

相似文献

5
Two-Dimensional Quaternion PCA and Sparse PCA.二维四元数主成分分析和稀疏主成分分析。
IEEE Trans Neural Netw Learn Syst. 2019 Jul;30(7):2028-2042. doi: 10.1109/TNNLS.2018.2872541. Epub 2018 Nov 6.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验