Suppr超能文献

探索用于先进储能设备的粘合剂的化学、机械和电气功能。

Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices.

作者信息

Chen Hao, Ling Min, Hencz Luke, Ling Han Yeu, Li Gaoran, Lin Zhan, Liu Gao, Zhang Shanqing

机构信息

Centre for Clean Environment and Energy, School of Environment and Science , Griffith University, Gold Coast Campus , Gold Coast , Queensland 4222 , Australia.

Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology , College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027 , China.

出版信息

Chem Rev. 2018 Sep 26;118(18):8936-8982. doi: 10.1021/acs.chemrev.8b00241. Epub 2018 Aug 22.

Abstract

Tremendous efforts have been devoted to the development of electrode materials, electrolytes, and separators of energy-storage devices to address the fundamental needs of emerging technologies such as electric vehicles, artificial intelligence, and virtual reality. However, binders, as an important component of energy-storage devices, are yet to receive similar attention. Polyvinylidene fluoride (PVDF) has been the dominant binder in the battery industry for decades despite several well-recognized drawbacks, i.e., limited binding strength due to the lack of chemical bonds with electroactive materials, insufficient mechanical properties, and low electronic and lithium-ion conductivities. The limited binding function cannot meet inherent demands of emerging electrode materials with high capacities such as silicon anodes and sulfur cathodes. To address these concerns, in this review we divide the binding between active materials and binders into two major mechanisms: mechanical interlocking and interfacial binding forces. We review existing and emerging binders, binding technology used in energy-storage devices (including lithium-ion batteries, lithium-sulfur batteries, sodium-ion batteries, and supercapacitors), and state-of-the-art mechanical characterization and computational methods for binder research. Finally, we propose prospective next-generation binders for energy-storage devices from the molecular level to the macro level. Functional binders will play crucial roles in future high-performance energy-storage devices.

摘要

为满足电动汽车、人工智能和虚拟现实等新兴技术的基本需求,人们在储能设备的电极材料、电解质和隔膜的研发方面付出了巨大努力。然而,作为储能设备的重要组成部分,粘结剂尚未受到类似的关注。几十年来,聚偏氟乙烯(PVDF)一直是电池行业的主导粘结剂,尽管存在一些公认的缺点,即与电活性材料缺乏化学键导致粘结强度有限、机械性能不足以及电子和锂离子传导率低。有限的粘结功能无法满足硅阳极和硫阴极等高容量新兴电极材料的内在需求。为解决这些问题,在本综述中,我们将活性材料与粘结剂之间的粘结分为两种主要机制:机械互锁和界面结合力。我们综述了储能设备(包括锂离子电池、锂硫电池、钠离子电池和超级电容器)中使用的现有和新兴粘结剂、粘结技术,以及用于粘结剂研究的最新机械表征和计算方法。最后,我们从分子水平到宏观水平提出了储能设备下一代粘结剂的展望。功能性粘结剂将在未来高性能储能设备中发挥关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验