Suppr超能文献

通过全基因组CRISPR-Cas9筛选和转录组学阐明瑞德西韦的细胞毒性途径。

Elucidation of remdesivir cytotoxicity pathways through genome-wide CRISPR-Cas9 screening and transcriptomics.

作者信息

Akinci Ersin, Cha Minsun, Lin Lin, Yeo Grace, Hamilton Marisa C, Donahue Callie J, Bermudez-Cabrera Heysol C, Zanetti Larissa C, Chen Maggie, Barkal Sammy A, Khowpinitchai Benyapa, Chu Nam, Velimirovic Minja, Jodhani Rikita, Fife James D, Sovrovic Miha, Cole Philip A, Davey Robert A, Cassa Christopher A, Sherwood Richard I

机构信息

Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.

Department of Agricultural Biotechnology, Faculty of Agriculture, Akdeniz University, Antalya, 07070, Turkey.

出版信息

bioRxiv. 2020 Aug 28:2020.08.27.270819. doi: 10.1101/2020.08.27.270819.

Abstract

The adenosine analogue remdesivir has emerged as a front-line antiviral treatment for SARS-CoV-2, with preliminary evidence that it reduces the duration and severity of illness.Prior clinical studies have identified adverse events, and remdesivir has been shown to inhibit mitochondrial RNA polymerase in biochemical experiments, yet little is known about the specific genetic pathways involved in cellular remdesivir metabolism and cytotoxicity. Through genome-wide CRISPR-Cas9 screening and RNA sequencing, we show that remdesivir treatment leads to a repression of mitochondrial respiratory activity, and we identify five genes whose loss significantly reduces remdesivir cytotoxicity. In particular, we show that loss of the mitochondrial nucleoside transporter mitigates remdesivir toxicity without a commensurate decrease in SARS-CoV-2 antiviral potency and that the mitochondrial adenylate kinase is a remdesivir kinase required for remdesivir efficacy and toxicity. This work elucidates the cellular mechanisms of remdesivir metabolism and provides a candidate gene target to reduce remdesivir cytotoxicity.

摘要

腺苷类似物瑞德西韦已成为治疗新型冠状病毒肺炎(SARS-CoV-2)的一线抗病毒药物,初步证据表明它可缩短病程并减轻病情严重程度。既往临床研究已确定了不良事件,并且在生化实验中已证明瑞德西韦可抑制线粒体RNA聚合酶,但对于参与细胞内瑞德西韦代谢和细胞毒性的具体遗传途径知之甚少。通过全基因组CRISPR-Cas9筛选和RNA测序,我们发现瑞德西韦治疗会导致线粒体呼吸活性受到抑制,并且我们鉴定出五个基因,其缺失会显著降低瑞德西韦的细胞毒性。特别是,我们发现线粒体核苷转运体的缺失可减轻瑞德西韦毒性,而不会相应降低SARS-CoV-2抗病毒效力,并且线粒体腺苷酸激酶是瑞德西韦发挥疗效和毒性所需的一种瑞德西韦激酶。这项工作阐明了瑞德西韦代谢的细胞机制,并提供了一个可降低瑞德西韦细胞毒性的候选基因靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df10/7457617/5979d5c2d1d0/nihpp-2020.08.27.270819-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验