Parekh Mayur, Ali AbdulAziz, Ali Zulfiqur, Bateson Simon, Abugchem Fathi, Pybus Leon, Lennon Christopher
Healthcare Innovation Centre, School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK.
Analyst. 2020 Sep 14;145(18):6148-6161. doi: 10.1039/d0an01266a.
Optimisation of bioprocesses relies on approaches that are either labour intensive or require expensive robotic systems. There is a need for fluidic processing at low volume that can be integrated with existing bioprocess analytics to provide analytical information for the development and optimisation of bioprocesses. We demonstrate a 1 mL polymer inkjet 3D printed (i3DP) microbioreactor with integrated sensing (pH, oxygen and cell density) for optimisation of recombinant protein production with different feeds. A pressurised fluid driving system was used to control flow rates down to 0.7 μL min-1 with fluid switching from four reservoirs using a manifold controlled by solenoid valves. Oxygen transferred from a headspace via a gas-permeable membrane achieved a kLa of up to 90 h-1 at 1500 rpm. Cultivation of E. coli within the microbioreactor was comparable with a 2 L bench scale bioreactor, with optical densities of respectively 7.1 ± 0.4 and 6.5 ± 0.35. Triplicate batch cultivations within the microbioreactor of Pichia pastoris, with diauxic growth on glycerol (0.20 ± 0.02 h-1) and methanol (0.02 ± 0.04 h-1), showed good control of pH and DO and achieved a maximum dry cell weight of 10 ± 1 g L-1. For continuous cultivations, recombinant protein production was higher in pure methanol (314 ± 23) than methanol-sorbitol (202 ± 17) but reduces over time with lower cellular viability for methanol-glucose mixed feed, with less total protein produced and increases in DNA and proteases released. The developed system could be used in different applications including within synthetic biology, cell and gene therapy and organ-on-chips.
生物过程的优化依赖于劳动密集型方法或需要昂贵的机器人系统。需要低体积的流体处理,其可以与现有的生物过程分析相结合,以提供用于生物过程开发和优化的分析信息。我们展示了一种1 mL聚合物喷墨3D打印(i3DP)微生物反应器,其具有集成传感(pH、氧气和细胞密度)功能,用于优化不同进料条件下的重组蛋白生产。使用加压流体驱动系统将流速控制至低至0.7 μL min-1,流体通过由电磁阀控制的歧管从四个储液器切换。通过透气膜从顶空转移的氧气在1500 rpm下实现了高达90 h-1的体积传氧系数(kLa)。微生物反应器内大肠杆菌的培养与2 L台式规模生物反应器相当,光密度分别为7.1±0.4和6.5±0.35。在微生物反应器中对毕赤酵母进行了三次分批培养,在甘油(0.20±0.02 h-1)和甲醇(0.02±0.04 h-1)上进行双相生长,显示出对pH和溶解氧(DO)的良好控制,并且实现了10±1 g L-1的最大干细胞重量。对于连续培养,在纯甲醇(314±23)中重组蛋白产量高于甲醇-山梨醇(202±17),但随着时间的推移产量降低,甲醇-葡萄糖混合进料的细胞活力较低,产生的总蛋白较少,并且释放的DNA和蛋白酶增加。所开发的系统可用于不同的应用,包括合成生物学、细胞和基因治疗以及芯片器官。