Suppr超能文献

CaNDis:一个用于研究疾病、药物和药物靶点之间因果关系的网络服务器。

CaNDis: a web server for investigation of causal relationships between diseases, drugs and drug targets.

机构信息

Department of Knowledge Technologies, Jožef Stefan Institute, Slovenia.

Jožef Stefan International Postgraduate School, Slovenia.

出版信息

Bioinformatics. 2021 May 5;37(6):885-887. doi: 10.1093/bioinformatics/btaa762.

Abstract

MOTIVATION

Causal biological interaction networks represent cellular regulatory pathways. Their fusion with other biological data enables insights into disease mechanisms and novel opportunities for drug discovery.

RESULTS

We developed Causal Network of Diseases (CaNDis), a web server for the exploration of a human causal interaction network, which we expanded with data on diseases and FDA-approved drugs, on the basis of which we constructed a disease-disease network in which the links represent the similarity between diseases. We show how CaNDis can be used to identify candidate genes with known and novel roles in disease co-occurrence and drug-drug interactions.

AVAILABILITYAND IMPLEMENTATION

CaNDis is freely available to academic users at http://candis.ijs.si and http://candis.insilab.org.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

因果生物相互作用网络代表细胞调控途径。将其与其他生物数据融合,可深入了解疾病机制并为药物发现提供新的机会。

结果

我们开发了因果疾病网络(CaNDis),这是一个用于探索人类因果相互作用网络的网络服务器,我们在该网络中扩展了疾病和 FDA 批准药物的数据,并在此基础上构建了疾病-疾病网络,其中的链接代表疾病之间的相似性。我们展示了如何使用 CaNDis 来识别已知和新的在疾病共发生和药物-药物相互作用中具有作用的候选基因。

可用性和实现

CaNDis 可供学术用户免费使用,网址为 http://candis.ijs.sihttp://candis.insilab.org。

补充信息

补充数据可在 Bioinformatics 在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/543a/8098028/b9d8edd6ec32/btaa762f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验