El Asnaoui Khalid, Chawki Youness
Complex System Engineering and Human System, Mohammed VI Polytechnic University, Benguerir, Morocco.
Faculty of Sciences and Techniques, Moulay Ismail University, Errachidia, Morocco.
J Biomol Struct Dyn. 2021 Jul;39(10):3615-3626. doi: 10.1080/07391102.2020.1767212. Epub 2020 May 22.
Coronavirus is still the leading cause of death worldwide. There are a set number of COVID-19 test units accessible in emergency clinics because of the expanding cases daily. Therefore, it is important to implement an automatic detection and classification system as a speedy elective finding choice to forestall COVID-19 spreading among individuals. Medical images analysis is one of the most promising research areas, it provides facilities for diagnosis and making decisions of a number of diseases such as Coronavirus. This paper conducts a comparative study of the use of the recent deep learning models (VGG16, VGG19, DenseNet201, Inception_ResNet_V2, Inception_V3, Resnet50, and MobileNet_V2) to deal with detection and classification of coronavirus pneumonia. The experiments were conducted using chest X-ray & CT dataset of 6087 images (2780 images of bacterial pneumonia, 1493 of coronavirus, 231 of Covid19, and 1583 normal) and confusion matrices are used to evaluate model performances. Results found out that the use of inception_Resnet_V2 and Densnet201 provide better results compared to other models used in this work (92.18% accuracy for Inception-ResNetV2 and 88.09% accuracy for Densnet201).Communicated by Ramaswamy H. Sarma.
冠状病毒仍然是全球主要的死亡原因。由于每日病例不断增加,急诊诊所中可用的新冠病毒检测单元数量有限。因此,实施自动检测和分类系统作为一种快速的替代诊断选择,以防止新冠病毒在人群中传播非常重要。医学图像分析是最有前途的研究领域之一,它为多种疾病(如冠状病毒)的诊断和决策提供了便利。本文对最近的深度学习模型(VGG16、VGG19、DenseNet201、Inception_ResNet_V2、Inception_V3、Resnet50和MobileNet_V2)用于冠状病毒肺炎检测和分类的情况进行了比较研究。实验使用了包含6087张图像的胸部X光和CT数据集(2780张细菌性肺炎图像、1493张冠状病毒图像、231张新冠病毒图像和1583张正常图像),并使用混淆矩阵来评估模型性能。结果发现,与本研究中使用的其他模型相比,Inception_Resnet_V2和Densnet201的使用效果更好(Inception-ResNetV2的准确率为92.18%,Densnet201的准确率为88.09%)。由拉马斯瓦米·H·萨尔马传达。