Suppr超能文献

利用X射线图像和深度学习自动检测冠状病毒病。

Using X-ray images and deep learning for automated detection of coronavirus disease.

作者信息

El Asnaoui Khalid, Chawki Youness

机构信息

Complex System Engineering and Human System, Mohammed VI Polytechnic University, Benguerir, Morocco.

Faculty of Sciences and Techniques, Moulay Ismail University, Errachidia, Morocco.

出版信息

J Biomol Struct Dyn. 2021 Jul;39(10):3615-3626. doi: 10.1080/07391102.2020.1767212. Epub 2020 May 22.

Abstract

Coronavirus is still the leading cause of death worldwide. There are a set number of COVID-19 test units accessible in emergency clinics because of the expanding cases daily. Therefore, it is important to implement an automatic detection and classification system as a speedy elective finding choice to forestall COVID-19 spreading among individuals. Medical images analysis is one of the most promising research areas, it provides facilities for diagnosis and making decisions of a number of diseases such as Coronavirus. This paper conducts a comparative study of the use of the recent deep learning models (VGG16, VGG19, DenseNet201, Inception_ResNet_V2, Inception_V3, Resnet50, and MobileNet_V2) to deal with detection and classification of coronavirus pneumonia. The experiments were conducted using chest X-ray & CT dataset of 6087 images (2780 images of bacterial pneumonia, 1493 of coronavirus, 231 of Covid19, and 1583 normal) and confusion matrices are used to evaluate model performances. Results found out that the use of inception_Resnet_V2 and Densnet201 provide better results compared to other models used in this work (92.18% accuracy for Inception-ResNetV2 and 88.09% accuracy for Densnet201).Communicated by Ramaswamy H. Sarma.

摘要

冠状病毒仍然是全球主要的死亡原因。由于每日病例不断增加,急诊诊所中可用的新冠病毒检测单元数量有限。因此,实施自动检测和分类系统作为一种快速的替代诊断选择,以防止新冠病毒在人群中传播非常重要。医学图像分析是最有前途的研究领域之一,它为多种疾病(如冠状病毒)的诊断和决策提供了便利。本文对最近的深度学习模型(VGG16、VGG19、DenseNet201、Inception_ResNet_V2、Inception_V3、Resnet50和MobileNet_V2)用于冠状病毒肺炎检测和分类的情况进行了比较研究。实验使用了包含6087张图像的胸部X光和CT数据集(2780张细菌性肺炎图像、1493张冠状病毒图像、231张新冠病毒图像和1583张正常图像),并使用混淆矩阵来评估模型性能。结果发现,与本研究中使用的其他模型相比,Inception_Resnet_V2和Densnet201的使用效果更好(Inception-ResNetV2的准确率为92.18%,Densnet201的准确率为88.09%)。由拉马斯瓦米·H·萨尔马传达。

相似文献

1
Using X-ray images and deep learning for automated detection of coronavirus disease.利用X射线图像和深度学习自动检测冠状病毒病。
J Biomol Struct Dyn. 2021 Jul;39(10):3615-3626. doi: 10.1080/07391102.2020.1767212. Epub 2020 May 22.

引用本文的文献

3
Breaking barriers: noninvasive AI model for BRAF mutation identification.突破障碍:用于BRAF突变识别的无创人工智能模型
Int J Comput Assist Radiol Surg. 2025 May;20(5):935-947. doi: 10.1007/s11548-024-03290-0. Epub 2025 Feb 15.
10
A comprehensive review of federated learning for COVID-19 detection.关于COVID-19检测的联邦学习综合综述。
Int J Intell Syst. 2022 Mar;37(3):2371-2392. doi: 10.1002/int.22777. Epub 2021 Dec 6.

本文引用的文献

5
A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia.一种用于筛查2019冠状病毒病肺炎的深度学习系统。
Engineering (Beijing). 2020 Oct;6(10):1122-1129. doi: 10.1016/j.eng.2020.04.010. Epub 2020 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验