Suppr超能文献

一个可公开获取的咽炎数据集以及用于细菌或非细菌分类的基线评估。

A publicly available pharyngitis dataset and baseline evaluations for bacterial or nonbacterial classification.

作者信息

Shojaei Negar, Rostami Habib, Barzegar Mohammad, Farzaneh Shokooh Saadat, Farrar Zohreh, Alimohammadi Majid, Keyvani Jahanbakhsh, Mirzad Mehdi, Gonbadi Leila

机构信息

Department of Computer Engineering, Faculty of Intelligent Systems Engineering and Data Science, Persian Gulf University, Bushehr, 7516913817, Iran.

Department of Medicine, Sina Hospital of Junqan, Shahrekord University of Medical Sciences, Chaharmahal and Bakhtiari, Shahrekord, Iran.

出版信息

Sci Data. 2025 Aug 13;12(1):1418. doi: 10.1038/s41597-025-05780-5.

Abstract

Accurate and early differentiation between bacterial and nonbacterial pharyngitis is crucial for optimizing treatment and minimizing unnecessary antibiotic use. The similar clinical presentation of sore throat in bacterial and nonbacterial infections poses significant diagnostic challenges, even for experienced clinicians. To address this, we developed a publicly available dataset consisting of high-resolution throat images captured using smartphone cameras. These images were analyzed through deep neural networks to distinguish between bacterial and nonbacterial infections based on visual features and symptoms. The dataset is the largest publicly available dataset in this field, which includes images from 742 patients experiencing common cold symptoms. For each patient, it also records the presence or absence of 20 symptoms, age, gender, and between 4 to 9 diagnoses by different physicians. Furthermore, three baseline models were established to differentiate bacterial from nonbacterial infections. Our goal is to enhance the field of non-invasive and accurate pharyngitis diagnosis, drive the development of AI-driven diagnostic tools, promote remote healthcare solutions, and inspire future innovations in medical image analysis.

摘要

准确且早期区分细菌性咽炎和非细菌性咽炎对于优化治疗以及减少不必要的抗生素使用至关重要。细菌性和非细菌性感染中喉咙痛的临床表现相似,这给诊断带来了重大挑战,即使对于经验丰富的临床医生也是如此。为了解决这一问题,我们开发了一个公开可用的数据集,该数据集由使用智能手机摄像头拍摄的高分辨率喉咙图像组成。通过深度神经网络对这些图像进行分析,以根据视觉特征和症状区分细菌性和非细菌性感染。该数据集是该领域最大的公开可用数据集,其中包括742名出现普通感冒症状患者的图像。对于每位患者,它还记录了20种症状的有无、年龄、性别以及不同医生做出的4至9种诊断。此外,还建立了三个基线模型来区分细菌性感染和非细菌性感染。我们的目标是加强非侵入性和准确的咽炎诊断领域,推动人工智能驱动的诊断工具的发展,促进远程医疗解决方案,并激发医学图像分析领域未来的创新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d34/12350927/21ac79b81b00/41597_2025_5780_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验