Player Thomas C, Hore P J
Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford, United Kingdom.
J Chem Phys. 2020 Aug 28;153(8):084303. doi: 10.1063/5.0021643.
We present an analysis of reported magnetic field effects (MFEs) on the yield of formic acid produced by electrocatalytic reduction of carbon dioxide at a nanoparticle tin electrode [H. P. Pan et al., J. Phys. Chem. Lett. 11, 48-53 (2020)]. Radical pair spin dynamics simulations are used to show that (1) the Δg mechanism favored by Pan et al. is not sufficient to explain the observed magneto-current, (2) field-dependent spin relaxation, resulting from the anisotropy of the g-tensor of CO , combined with the coherent singlet-triplet interconversion arising from isotropic hyperfine and Zeeman interactions, can quantitatively account for the observed MFE, and (3) modification of hyperfine interactions by isotopic substitution (H → H and/or C → C) could be used to test both the proposed reaction mechanism and the interpretation presented here.
我们对纳米颗粒锡电极上二氧化碳电催化还原生成甲酸的产率所报道的磁场效应(MFE)进行了分析[H. P. Pan等人,《物理化学快报》11,48 - 53(2020)]。自由基对自旋动力学模拟表明:(1)Pan等人所支持的Δg机制不足以解释观测到的磁电流;(2)由CO的g张量各向异性导致的场依赖自旋弛豫,与各向同性超精细和塞曼相互作用引起的相干单重态 - 三重态相互转换相结合,可以定量解释观测到的MFE;(3)通过同位素取代(H→D和/或C→¹³C)对超精细相互作用进行修饰,可用于检验所提出的反应机制以及本文给出的解释。