Connor Bridget A, Biega Raisa-Ioana, Leppert Linn, Karunadasa Hemamala I
Department of Chemistry , Stanford University , Stanford , California 94305 , USA . Email:
Institute of Physics , University of Bayreuth , 95440 Bayreuth , Germany . Email:
Chem Sci. 2020 Jun 5;11(29):7708-7715. doi: 10.1039/d0sc01580f. eCollection 2020 Aug 7.
Quantum confinement effects in lower-dimensional derivatives of the ABX (A = monocation, X = halide) single perovskites afford striking optical and electronic changes, enabling applications ranging from solar absorbers to phosphors and light-emitting diodes. Halide double perovskites form a larger materials family, known since the late 1800s, but lower-dimensional derivatives remain rare and prior work has revealed a minimal effect of quantum confinement on their optical properties. Here, we synthesize three new lower-dimensional derivatives of the 3D double perovskite CsAgTlBr: 2D derivatives with mono- () and bi-layer thick () inorganic sheets and a quasi-1D derivative (). Single-crystal ellipsometry studies of these materials show the first clear demonstration that dimensional reduction can significantly alter the optical properties of 2D halide double perovskites. This large quantum confinement effect is attributed to the substantial electronic delocalization of the parent 3D Ag-Tl perovskite. Calculations track the evolution of the electronic bands with dimensional reduction and the accompanying structural distortions and show a direct-to-indirect bandgap transition as the 3D perovskite lattice is thinned to a monolayer in . This bandgap transition at the monolayer limit is also evident in the calculations for , an isostructural, isoelectronic analogue to in which In replaces Tl, underscoring the orbital basis for the direct/indirect nature of the bandgap. Thus, in complement to the massive compositional diversity of halide double perovskites, dimensional reduction may be used as a systematic route for harnessing electronic confinement effects and obtaining new electronic structures.
ABX(A = 单价阳离子,X = 卤化物)单钙钛矿的低维衍生物中的量子限制效应带来了显著的光学和电学变化,使得其应用范围涵盖从太阳能吸收器到磷光体和发光二极管等领域。卤化物双钙钛矿构成了一个更大的材料家族,自19世纪后期就已为人所知,但低维衍生物仍然稀少,先前的研究表明量子限制对其光学性质的影响极小。在此,我们合成了三维双钙钛矿CsAgTlBr的三种新型低维衍生物:具有单层( )和双层厚( )无机片层的二维衍生物以及一种准一维衍生物( )。对这些材料的单晶椭偏光谱研究首次明确表明,维度降低可显著改变二维卤化物双钙钛矿的光学性质。这种巨大的量子限制效应归因于母体三维Ag-Tl钙钛矿的大量电子离域。计算追踪了随着维度降低电子能带的演变以及伴随的结构畸变,并表明当三维钙钛矿晶格在 中被减薄至单层时会发生直接带隙到间接带隙的转变。在 (一种In取代Tl的同结构、等电子类似物)的计算中,单层极限处的这种带隙转变也很明显,这突出了带隙直接/间接性质的轨道基础。因此,除了卤化物双钙钛矿大量的成分多样性之外,维度降低可作为一种系统途径来利用电子限制效应并获得新的电子结构。