Universität Tübingen, Europastr. 6, 72072, Tübingen, Germany.
University of Cambridge, Cambridge, UK.
Behav Res Methods. 2021 Apr;53(2):803-817. doi: 10.3758/s13428-020-01456-7.
Clause subordination is an important linguistic phenomenon that is relevant to research in psycholinguistics, cognitive and behavioral sciences, language acquisition, and computational information retrieval. The paper presents a comprehensive tool called AutoSubClause, which is specifically designed for extracting subordinate clause (SC) information from natural English production. Using dependency parsing, AutoSubClause is able to extract not only information characterizing the three main types of SCs-complement, adverbial, and relative clauses-but also information regarding the internal structure of different clause types and their semantic and structural relations with elements of the main clause. Robustness testing of the system and its underlying dependency parser Stanford CoreNLP showed satisfactory results. To demonstrate the usefulness of AutoSubClause, we used it to analyze a large-scale learner corpus and investigate the effects of first language (L1) on the acquisition of subordination in second language (L2) English. Our analysis shows that learners from an L1 that is typologically different from the L2 in clause subordination tend to have different developmental trajectories from those whose L1 is typologically similar to the L2. Furthermore, the developmental patterns for different types of SCs also vary. This finding suggests the need to approach clausal subordination as a multi-componential construct rather than a unitary one, as is the case in most previous research. Finally, we demonstrate how NLP technology can support research questions that rely on linguistic analysis across various disciplines and help gain new insights with the increasing opportunities for up-scaled analysis.
从句从属关系是一种重要的语言现象,与心理语言学、认知和行为科学、语言习得和计算信息检索等研究领域相关。本文介绍了一个名为 AutoSubClause 的综合工具,它专门用于从自然英语文本中提取从属子句 (SC) 信息。AutoSubClause 使用依存句法分析来提取不仅包括补语、状语和关系从句这三种主要 SC 类型的特征信息,还包括不同子句类型的内部结构以及它们与主句元素之间的语义和结构关系的信息。系统及其底层的依存句法分析器 Stanford CoreNLP 的稳健性测试结果令人满意。为了展示 AutoSubClause 的实用性,我们使用它分析了一个大规模的学习者语料库,并研究了母语 (L1) 对第二语言 (L2) 英语中从属关系习得的影响。我们的分析表明,来自与 L2 从句从属关系在类型上不同的 L1 的学习者往往具有与 L1 与 L2 在类型上相似的学习者不同的发展轨迹。此外,不同类型的 SC 的发展模式也有所不同。这一发现表明,需要将从属关系视为一个多成分结构,而不是像大多数先前研究中那样将其视为一个单一的结构。最后,我们展示了自然语言处理技术如何支持跨多个学科的基于语言分析的研究问题,并通过不断增加的大规模分析机会提供新的见解。