Suppr超能文献

通过非均匀采样减少精确 NOE 的测量时间。

Reducing the measurement time of exact NOEs by non-uniform sampling.

机构信息

Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA.

Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

出版信息

J Biomol NMR. 2020 Dec;74(12):717-739. doi: 10.1007/s10858-020-00344-8. Epub 2020 Sep 3.

Abstract

We have previously reported on the measurement of exact NOEs (eNOEs), which yield a wealth of additional information in comparison to conventional NOEs. We have used these eNOEs in a variety of applications, including calculating high-resolution structures of proteins and RNA molecules. The collection of eNOEs is challenging, however, due to the need to measure a NOESY buildup series consisting of typically four NOESY spectra with varying mixing times in a single measurement session. While the 2D version can be completed in a few days, a fully sampled 3D-NOESY buildup series can take 10 days or more to acquire. This can be both expensive as well as problematic in the case of samples that are not stable over such a long period of time. One potential method to significantly decrease the required measurement time of eNOEs is to use non-uniform sampling (NUS) to decrease the number of points measured in the indirect dimensions. The effect of NUS on the extremely tight distance restraints extracted from eNOEs may be very pronounced. Therefore, we investigated the fidelity of eNOEs measured from three test cases at decreasing NUS densities: the 18.4 kDa protein human Pin1, the 4.1 kDa WW domain of Pin1 (both in 3D), and a 4.6 kDa 14mer RNA UUCG tetraloop (2D). Our results show that NUS imparted negligible error on the eNOE distances derived from good quality data down to 10% sampling for all three cases, but there is a noticeable decrease in the eNOE yield that is dependent upon the underlying sparsity, and thus complexity, of the sample. For Pin1, this transition occurred at roughly 40% while for the WW domain and the UUCG tetraloop it occurred at lower NUS densities of 20% and 10%, respectively. We rationalized these numbers through reconstruction simulations under various conditions. The extent of this loss depends upon the number of scans taken as well as the number of peaks to be reconstructed. Based on these findings, we have created guidelines for choosing an optimal NUS density depending on the number of peaks needed to be reconstructed in the densest region of a 2D or 3D NOESY spectrum.

摘要

我们之前已经报道过精确 NOE(eNOE)的测量,与传统的 NOE 相比,它可以提供更多的附加信息。我们已经将这些 eNOE 用于各种应用,包括计算蛋白质和 RNA 分子的高分辨率结构。然而,由于需要在单个测量会话中测量由典型的四个 NOESY 谱组成的 NOESY 堆积系列,因此收集 eNOE 具有挑战性,其中每个谱的混合时间都不同。虽然二维版本可以在几天内完成,但完全采样的 3D-NOESY 堆积系列可能需要 10 天或更长时间才能采集。对于在这么长时间内不稳定的样品,这既昂贵又成问题。一种可以显著减少 eNOE 所需测量时间的潜在方法是使用非均匀采样(NUS)来减少间接维度中测量的点数。NUS 对从 eNOE 中提取的极其紧密距离约束的影响可能非常显著。因此,我们研究了在降低 NUS 密度的情况下,从三个测试案例中测量的 eNOE 的保真度:分子量为 18.4 kDa 的蛋白质人 Pin1、分子量为 4.1 kDa 的 Pin1 的 WW 结构域(均为 3D)和分子量为 4.6 kDa 的 14 mer RNA UUCG 四环(2D)。我们的结果表明,对于所有三个案例,当采样率降至 10%时,NUS 对从高质量数据中得出的 eNOE 距离几乎没有引入误差,但 eNOE 的产量却明显下降,这取决于样本的基础稀疏性,即复杂性。对于 Pin1,这种转变发生在大约 40%时,而对于 WW 结构域和 UUCG 四环,分别在 20%和 10%的更低 NUS 密度下发生。我们通过在各种条件下进行重建模拟来合理化这些数字。这种损失的程度取决于采集的扫描次数以及要重建的峰数。基于这些发现,我们根据在二维或三维 NOESY 谱最密集区域中需要重建的峰数,创建了根据需要选择最佳 NUS 密度的指南。

相似文献

1
Reducing the measurement time of exact NOEs by non-uniform sampling.通过非均匀采样减少精确 NOE 的测量时间。
J Biomol NMR. 2020 Dec;74(12):717-739. doi: 10.1007/s10858-020-00344-8. Epub 2020 Sep 3.
2
The experimental accuracy of the uni-directional exact NOE.单向精确核欧沃豪斯效应(NOE)的实验精度
J Magn Reson. 2015 Oct;259:32-46. doi: 10.1016/j.jmr.2015.07.007. Epub 2015 Aug 7.
4
Non-uniform sampling for NOESY? A case study on spiramycin.NOESY 的非均匀采样?螺旋霉素的案例研究。
Magn Reson Chem. 2021 Jul;59(7):723-737. doi: 10.1002/mrc.5133. Epub 2021 Feb 2.
10
Stereospecific assignments in proteins using exact NOEs.使用精确 NOE 进行蛋白质的立体专一性分配。
J Biomol NMR. 2013 Nov;57(3):211-8. doi: 10.1007/s10858-013-9780-4. Epub 2013 Oct 18.

本文引用的文献

1
Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra.使用深度神经网络重建非均匀采样的 NMR 光谱。
J Biomol NMR. 2019 Nov;73(10-11):577-585. doi: 10.1007/s10858-019-00265-1. Epub 2019 Jul 10.
7
NOE-Derived Methyl Distances from a 360 kDa Proteasome Complex.来自360 kDa蛋白酶体复合物的NOE衍生甲基距离
Chemistry. 2018 Feb 9;24(9):2270-2276. doi: 10.1002/chem.201705551. Epub 2018 Jan 17.
8
eNORA2 Exact NOE Analysis Program.eNORA2精确核Overhauser效应分析程序
J Chem Theory Comput. 2017 Sep 12;13(9):4336-4346. doi: 10.1021/acs.jctc.7b00436. Epub 2017 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验