Suppr超能文献

挖掘社交媒体数据以调查患者对类风湿关节炎改善病情抗风湿药药物治疗的看法。

Mining social media data to investigate patient perceptions regarding DMARD pharmacotherapy for rheumatoid arthritis.

作者信息

Sharma Chanakya, Whittle Samuel, Haghighi Pari Delir, Burstein Frada, Sa'adon Roee, Keen Helen Isobel

机构信息

Rheumatology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia

Rheumatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.

出版信息

Ann Rheum Dis. 2020 Nov;79(11):1432-1437. doi: 10.1136/annrheumdis-2020-217333. Epub 2020 Sep 3.

Abstract

OBJECTIVES

We hypothesise that patients have a positive sentiment regarding biological/targeted synthetic disease modifying anti-rheumatic drugs (b/tsDMARDs) and a negative sentiment towards conventional synthetic agents (csDMARDs). We analysed discussions on social media platforms regarding DMARDs to understand the collective sentiment expressed towards these medications.

METHODS

Treato analytics were used to download all available posts on social media about DMARDs in the context of rheumatoid arthritis. Strict filters ensured that user generated content was downloaded. The sentiment (positive or negative) expressed in these posts was analysed for each DMARD using sentiment analysis. We also analysed the reason(s) for this sentiment for each DMARD, looking specifically at efficacy and side effects.

RESULTS

Computer algorithms analysed millions of social media posts and included 54 742 posts about DMARDs. We found that both classes had an overall positive sentiment. The ratio of positive to negative posts was higher for b/tsDMARDs (1.210) than for csDMARDs (1.048). Efficacy was the most commonly mentioned reason in posts with a positive sentiment and lack of efficacy was the most commonly mentioned reason for a negative sentiment. These were followed by the presence/absence of side effects in negative or positive posts, respectively.

CONCLUSIONS

Public opinion on social media is generally positive about DMARDs. Lack of efficacy followed by side effects were the most common themes in posts with a negative sentiment. There are clear reasons why a DMARD generates a positive or negative sentiment, as the sentiment analysis technology becomes more refined, targeted studies could be done to analyse these reasons and allow clinicians to tailor DMARDs to match patient needs.

摘要

目的

我们假设患者对生物性/靶向合成改善病情抗风湿药物(b/tsDMARDs)持积极态度,而对传统合成药物(csDMARDs)持消极态度。我们分析了社交媒体平台上有关DMARDs的讨论,以了解对这些药物表达的总体态度。

方法

使用Treato分析工具下载社交媒体上关于类风湿关节炎背景下DMARDs的所有可用帖子。严格的筛选确保下载用户生成的内容。使用情感分析对这些帖子中针对每种DMARD表达的情感(积极或消极)进行分析。我们还分析了每种DMARD产生这种情感的原因,特别关注疗效和副作用。

结果

计算机算法分析了数百万条社交媒体帖子,其中包括54742条关于DMARDs的帖子。我们发现这两类药物总体上都呈积极态度。b/tsDMARDs的积极帖子与消极帖子的比例(1.210)高于csDMARDs(1.048)。疗效是积极情感帖子中最常提及的原因,而缺乏疗效是消极情感帖子中最常提及的原因。其次分别是消极或积极帖子中副作用的有无。

结论

社交媒体上的公众舆论对DMARDs总体持积极态度。消极情感帖子中最常见的主题是缺乏疗效,其次是副作用。DMARDs产生积极或消极情感有明确原因,随着情感分析技术的不断完善,可以进行针对性研究来分析这些原因,使临床医生能够根据患者需求调整DMARDs的使用。

相似文献

引用本文的文献

5
The Promises and Perils of Social Media for Pediatric Rheumatology.社交媒体在儿科风湿病学中的利弊
Rheum Dis Clin North Am. 2022 Feb;48(1):233-243. doi: 10.1016/j.rdc.2021.09.005.

本文引用的文献

10
Preference for pharmaceutical formulation and treatment process attributes.对药物制剂和治疗过程属性的偏好。
Patient Prefer Adherence. 2016 Jul 27;10:1385-99. doi: 10.2147/PPA.S101821. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验