Suppr超能文献

联合机器学习和弥散张量成像揭示原发性开角型青光眼患者大脑解剖纤维连接的改变。

Combined machine learning and diffusion tensor imaging reveals altered anatomic fiber connectivity of the brain in primary open-angle glaucoma.

机构信息

Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, China.

出版信息

Brain Res. 2019 Sep 1;1718:83-90. doi: 10.1016/j.brainres.2019.05.006. Epub 2019 May 6.

Abstract

Parameters derived from diffusion tensor imaging (DTI) have been found to be significantly altered in the optic tracts, optic nerves, and optic radiations in patients with primary open-angle glaucoma (POAG). In this study, DTI-derived parameters were further constructed into fiber connectivity, and we investigated anatomical fiber connectivity changes within and beyond the visual pathway in POAG patients. DTI and T1-weighted magnetic resonance images were acquired in 18 POAG patients and 26 healthy controls (HC). White matter tracts based on the Brodmann atlases (BA) were constructed using the deterministic fiber tracking method. The mean fractional anisotropy (FA), fiber number (FN), and mean fiber length (FL) were measured and then evaluated using two-sample t-tests between POAG and HC. The fiber connectivity between regions was taken as the features for classifying HC and POAG using a machine learning method known as naïve Bayesian classification. The mean FA decreased in connections between visual cortex BA17/BA18 and cortex BA23/BA25/BA35/BA36, while it increased in the connections between cortex BA3/BA7/BA9 and BA5/BA6/BA45/BA25 in POAG. Classification using fibers where a significant difference in FN had been identified produced better accuracy (ACC = 0.89) than using FA or FL (ACC = 0.77 and 0.75, respectively). The FN of individual fiber connections with higher accuracy and significant changes in POAG involved brain regions associated with vision (BA19), depression (BA10/BA46/BA25), and memory (BA29). These findings strengthen the hypothesis that POAG involves changes in anatomical connectivity within and beyond the visual pathway. Classification using the machine learning method reveals that mean FN has the potential to be used as a biomarker for detecting white matter microstructure changes in POAG.

摘要

参数来源于弥散张量成像(DTI)已经发现,在原发性开角型青光眼(POAG)患者的视神经,视路和视放射明显改变。在这项研究中,进一步构建 DTI 衍生参数的纤维连接,并研究POAG 患者的视路内和视路外的解剖纤维连接的变化。DTI 和 T1 加权磁共振成像采集了 18 例 POAG 患者和 26 例健康对照组(HC)。基于布罗德曼图谱(BA)的白质束采用确定性纤维追踪法构建。测量平均各向异性分数(FA),纤维数(FN)和平均纤维长度(FL),然后用两样本 t 检验评估 POAG 和 HC 之间的差异。使用朴素贝叶斯分类等机器学习方法,将区域之间的纤维连接作为分类 HC 和 POAG 的特征。FA 在视觉皮层 BA17/BA18 和皮层 BA23/BA25/BA35/BA36 之间的连接减少,而 FN 在 POAG 中在皮层 BA3/BA7/BA9 和 BA5/BA6/BA45/BA25 之间的连接增加。使用 FN 存在显著差异的纤维进行分类的准确性(ACC=0.89)优于 FA 或 FL(ACC=0.77 和 0.75)。具有较高准确性和 POAG 中显著变化的个体纤维连接的 FN 涉及与视觉(BA19),抑郁(BA10/BA46/BA25)和记忆(BA29)相关的大脑区域。这些发现加强了 POAG 涉及视路内和视路外解剖连接变化的假说。使用机器学习方法进行分类表明,平均 FN 有可能作为 POAG 检测白质微观结构变化的生物标志物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验