Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong 250012, P. R. China.
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, P. R. China.
ACS Appl Mater Interfaces. 2020 Sep 30;12(39):43408-43421. doi: 10.1021/acsami.0c12042. Epub 2020 Sep 17.
Glioblastoma (GBM) is the most common and lethal type of malignant brain tumor in adults. Currently, interventions are lacking, the median overall survival of patients with GBM is less than 15 months, and the postoperative recurrence rate is greater than 60%. We proposed an innovative local chemotherapy involving the construction of gene therapy-based iron oxide nanoparticles (IONPs) as a treatment for patients with glioblastoma after surgery that targeted ferroptosis and apoptosis to address these problems. The porous structure of IONPs with attached carboxyl groups was modified for the codelivery of small interfering RNA (siRNA) targeting glutathione peroxidase 4 (si-GPX4) and cisplatin (Pt) with high drug loading efficiencies. The synthesized folate (FA)/Pt-si-GPX4@IONPs exerted substantial effects on glioblastoma in U87MG and P3#GBM cells, but limited effects on normal human astrocytes (NHAs). During intracellular degradation, IONPs significantly increased iron (Fe and Fe) levels, while Pt destroyed nuclear DNA and mitochondrial DNA, leading to apoptosis. Furthermore, IONPs increased HO levels by activating reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). The Fenton reaction between Fe, Fe, and intracellular HO generated potent reactive oxygen species (ROS) to initiate ferroptosis, while the co-released si-GPX4 inhibited GPX4 expression and synergistically improved the therapeutic efficacy through a mechanism related to ferroptosis. As a result, superior therapeutic effects with low systemic toxicity were achieved both and , indicating that our nanoformulations might represent safe and efficient ferroptosis and apoptosis inducers for use in combinatorial glioblastoma therapy.
胶质母细胞瘤(GBM)是成人中最常见和最致命的恶性脑肿瘤。目前缺乏干预措施,GBM 患者的中位总生存期不到 15 个月,术后复发率大于 60%。我们提出了一种创新的局部化疗方法,涉及构建基于基因治疗的氧化铁纳米粒子(IONPs)作为手术后胶质母细胞瘤的治疗方法,靶向铁死亡和细胞凋亡以解决这些问题。具有附着羧基的 IONPs 的多孔结构被修饰用于共递送针对谷胱甘肽过氧化物酶 4(si-GPX4)和顺铂(Pt)的小干扰 RNA(siRNA),具有高药物载量效率。合成的叶酸(FA)/Pt-si-GPX4@IONPs 在 U87MG 和 P3#GBM 细胞中对胶质母细胞瘤有显著作用,但对正常人类星形胶质细胞(NHAs)作用有限。在细胞内降解过程中,IONPs 显著增加铁(Fe 和 Fe)水平,而 Pt 破坏核 DNA 和线粒体 DNA,导致细胞凋亡。此外,IONPs 通过激活还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶(NOX)增加 HO 水平。Fe、Fe 和细胞内 HO 之间的 Fenton 反应产生了强大的活性氧(ROS),引发铁死亡,而共释放的 si-GPX4 抑制 GPX4 表达,并通过与铁死亡相关的机制协同提高治疗效果。因此,在体内和体外均实现了优异的治疗效果和低系统毒性,表明我们的纳米制剂可能代表安全有效的铁死亡和凋亡诱导剂,可用于联合胶质母细胞瘤治疗。
ACS Appl Mater Interfaces. 2020-9-30
Biochim Biophys Acta Gen Subj. 2020-1-18
Front Oncol. 2025-8-11
Mol Ther Nucleic Acids. 2025-7-30
Probiotics Antimicrob Proteins. 2025-7-18
Int J Nanomedicine. 2025-5-6
Am J Cancer Res. 2025-3-15
Naunyn Schmiedebergs Arch Pharmacol. 2025-1