Glycosylation et différenciation cellulaire, EA 7500, Laboratoire PEIRENE, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France.
Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France.
Glycobiology. 2021 Apr 1;31(3):243-259. doi: 10.1093/glycob/cwaa086.
The formation of β1,3-linkages on animal glycoconjugates is catalyzed by a subset of β1,3-glycosyltransferases grouped in the Carbohydrate-Active enZYmes family glycosyltransferase-31 (GT31). This family represents an extremely diverse set of β1,3-N-acetylglucosaminyltransferases [B3GNTs and Fringe β1,3-N-acetylglucosaminyltransferases], β1,3-N-acetylgalactosaminyltransferases (B3GALNTs), β1,3-galactosyltransferases [B3GALTs and core 1 β1,3-galactosyltransferases (C1GALTs)], β1,3-glucosyltransferase (B3GLCT) and β1,3-glucuronyl acid transferases (B3GLCATs or CHs). The mammalian enzymes were particularly well studied and shown to use a large variety of sugar donors and acceptor substrates leading to the formation of β1,3-linkages in various glycosylation pathways. In contrast, there are only a few studies related to other metazoan and lower vertebrates GT31 enzymes and the evolutionary relationships of these divergent sequences remain obscure. In this study, we used bioinformatics approaches to identify more than 920 of putative GT31 sequences in Metazoa, Fungi and Choanoflagellata revealing their deep ancestry. Sequence-based analysis shed light on conserved motifs and structural features that are signatures of all the GT31. We leverage pieces of evidence from gene structure, phylogenetic and sequence-based analyses to identify two major subgroups of GT31 named Fringe-related and B3GALT-related and demonstrate the existence of 10 orthologue groups in the Urmetazoa, the hypothetical last common ancestor of all animals. Finally, synteny and paralogy analysis unveiled the existence of 30 subfamilies in vertebrates, among which 5 are new and were named C1GALT2, C1GALT3, B3GALT8, B3GNT10 and B3GNT11. Altogether, these various approaches enabled us to propose the first comprehensive analysis of the metazoan GT31 disentangling their evolutionary relationships.
动物糖缀合物上β1,3-键的形成是由一组归类于碳水化合物活性酶家族糖基转移酶-31(GT31)的β1,3-糖基转移酶催化的。该家族代表了一组极其多样化的β1,3-N-乙酰氨基葡萄糖基转移酶[B3GNTs 和 Fringe β1,3-N-乙酰氨基葡萄糖基转移酶]、β1,3-N-乙酰半乳糖胺基转移酶(B3GALNTs)、β1,3-半乳糖基转移酶[B3GALTs 和核心 1 β1,3-半乳糖基转移酶(C1GALTs)]、β1,3-葡糖基转移酶(B3GLCT)和β1,3-葡糖醛酸基转移酶(B3GLCAT 或 CHs)。哺乳动物酶的研究特别深入,并表明它们使用各种糖供体和受体底物,导致各种糖基化途径中β1,3-键的形成。相比之下,只有少数关于其他后生动物和低等脊椎动物 GT31 酶的研究,这些不同序列的进化关系仍然不清楚。在这项研究中,我们使用生物信息学方法在后生动物、真菌和领鞭毛虫中鉴定了超过 920 个推定的 GT31 序列,揭示了它们的深远起源。基于序列的分析揭示了所有 GT31 都具有的保守基序和结构特征。我们利用基因结构、系统发育和基于序列的分析的证据,鉴定了 GT31 的两个主要亚群,分别命名为 Fringe 相关和 B3GALT 相关,并证明了 Urmetazoa 中存在 10 个直系同源物群,Urmetazoa 是所有动物的最后共同祖先。最后,同线性和旁系同源分析揭示了脊椎动物中存在 30 个亚家族,其中 5 个是新的,分别命名为 C1GALT2、C1GALT3、B3GALT8、B3GNT10 和 B3GNT11。总之,这些不同的方法使我们能够提出对后生动物 GT31 的首次全面分析,阐明它们的进化关系。