Department of Biology, The University of Akron, OH, USA.
J Physiol. 2020 Nov;598(21):4821-4842. doi: 10.1113/JP280014. Epub 2020 Sep 26.
Rod and cone photoreceptors convert light into electrochemical signals that are transferred to second order cells, initiating image-forming visual processing. Electroretinograms (ERGs) can detect the associated light-induced extracellular transretinal events, allowing for physiological assessment of cellular activity from morphologically intact retinas. We outline a method for economically configuring a traditional patch-clamp rig for performing high signal-to-noise ex vivo ERGs. We accomplish this by incorporating various 3D printed components and by modifying existing light pathways in a typical patch-clamp rig. This methodology provides an additional set of tools to labs interested in studying the physiological function of neuronal populations in isolated retinal tissue.
Rod and cone photoreceptors of the retina are responsible for the initial stages in vision and convey sensory information regarding our visual world across a wide range of lighting conditions. These photoreceptors hyperpolarize in the presence of light and subsequently transmit signals to second-order bipolar and horizontal cells. The electrical components of these events are experimentally detectable, and in conjunction with pharmacological agents, can be further separated into their respective cellular contributions using electroretinograms (ERGs). Extracellular activity from populations of rods and cones generate the negative-going a-wave, while ON-bipolar cells generate positive-going b-waves. ERGs can be performed in vivo or alternatively using an ex vivo configuration, where retinas are isolated and transretinal photovoltages are recorded at high signal-to-noise ratios. However, most ERG set-ups require their own unique set of tools. We demonstrate how, at low cost, to reconfigure a typical patch-clamp rig for ERG recordings. The bulk of these modifications require implementation of various 3D printed components, which can alternatively aid in generating a stand-alone ERG set-up without a patch-rig. Further, we discuss how to configure an ERG system without a patch-clamp rig. Compared to in vivo ERGs, these are superior when measuring small responses, such as those that are cone-evoked or those from immature mouse retinae. This recording configuration provides high signal-to-noise detection of a-waves (300-600 µV) and b-waves (1-3 mV), and is ultimately capable of discerning small (1-2 µV) photovoltages from noise. These quick and economical modifications allow researchers to equip their technical arsenal with an interchangeable patch-clamp/ERG system.
视杆和视锥光感受器将光转化为电化学信号,这些信号被传递到二级细胞,从而启动形成图像的视觉处理。视网膜电图 (ERG) 可以检测到相关的光诱导细胞外的视网膜间光电流,从而允许从形态完整的视网膜对细胞活动进行生理评估。我们概述了一种经济有效地配置传统膜片钳装置以进行高信噪比的离体 ERG 的方法。我们通过整合各种 3D 打印组件并修改典型膜片钳装置中的现有光路来实现这一点。这种方法为有兴趣研究分离的视网膜组织中神经元群体的生理功能的实验室提供了另一组工具。
视网膜的视杆和视锥光感受器负责视觉的初始阶段,并在广泛的光照条件下传递有关我们视觉世界的感觉信息。这些光感受器在光的存在下超极化,随后将信号传递给二级双极和水平细胞。这些事件的电成分在实验上是可检测的,并且与药理学试剂结合使用,可以使用视网膜电图 (ERG) 将其进一步分离为各自的细胞贡献。视杆和视锥群体的细胞外活动产生负向的 a 波,而 ON 双极细胞产生正向的 b 波。ERG 可以在体内进行,或者使用离体配置进行,其中视网膜被分离并以高信噪比记录细胞间光电压。然而,大多数 ERG 装置需要自己独特的一套工具。我们展示了如何以低成本重新配置用于 ERG 记录的典型膜片钳装置。这些修改的大部分需要实现各种 3D 打印组件,这些组件也可以替代用于生成无需膜片钳装置的独立 ERG 装置。此外,我们讨论了如何在没有膜片钳装置的情况下配置 ERG 系统。与体内 ERG 相比,当测量小响应时,例如那些由视锥产生或来自未成熟小鼠视网膜的响应时,这些方法更优越。这种记录配置可以以高信噪比检测 a 波(300-600 µV)和 b 波(1-3 mV),并且最终能够从噪声中分辨出小的(1-2 µV)光电压。这些快速且经济的修改允许研究人员用可互换的膜片钳/ERG 系统装备他们的技术武器库。