Structural Cell Biology Group, School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, UK.
CVIP, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK.
Int J Mol Sci. 2020 Sep 2;21(17):6373. doi: 10.3390/ijms21176373.
Plasma lipoproteins are important carriers of cholesterol and have been linked strongly to cardiovascular disease (CVD). Our study aimed to achieve fine-grained measurements of lipoprotein subpopulations such as low-density lipoprotein (LDL), lipoprotein(a) (Lp(a), or remnant lipoproteins (RLP) using electron microscopy combined with machine learning tools from microliter samples of human plasma. In the reported method, lipoproteins were absorbed onto electron microscopy (EM) support films from diluted plasma and embedded in thin films of methyl cellulose (MC) containing mixed metal stains, providing intense edge contrast. The results show that LPs have a continuous frequency distribution of sizes, extending from LDL (> 15 nm) to intermediate density lipoprotein (IDL) and very low-density lipoproteins (VLDL). Furthermore, mixed metal staining produces striking "positive" contrast of specific antibodies attached to lipoproteins providing quantitative data on apolipoprotein(a)-positive Lp(a) or apolipoprotein B (ApoB)-positive particles. To enable automatic particle characterization, we also demonstrated efficient segmentation of lipoprotein particles using deep learning software characterized by a architecture with transfer learning. In future, EM and machine learning could be combined with microarray deposition and automated imaging for higher throughput quantitation of lipoproteins associated with CVD risk.
血浆脂蛋白是胆固醇的重要载体,与心血管疾病(CVD)密切相关。我们的研究旨在使用电子显微镜结合机器学习工具,从人类血浆的微升样本中实现对脂蛋白亚群(如低密度脂蛋白(LDL)、脂蛋白(a)(Lp(a))或残粒脂蛋白(RLP))的精细测量。在报告的方法中,脂蛋白从稀释的血浆中被吸收到电子显微镜(EM)支持膜上,并嵌入含有混合金属染色剂的甲基纤维素(MC)薄膜中,提供强烈的边缘对比。结果表明,LPs 具有大小的连续频率分布,从 LDL(>15nm)延伸到中间密度脂蛋白(IDL)和极低密度脂蛋白(VLDL)。此外,混合金属染色对附着在脂蛋白上的特异性抗体产生明显的“阳性”对比,提供了载脂蛋白(a)阳性 Lp(a)或载脂蛋白 B(ApoB)阳性颗粒的定量数据。为了实现自动粒子特征描述,我们还使用具有转移学习的架构的深度学习软件展示了脂蛋白粒子的有效分割。将来,EM 和机器学习可以与微阵列沉积和自动化成像相结合,用于与 CVD 风险相关的脂蛋白的高通量定量。