Forschungszentrum Jülich, Institute of Bio- and Geosciences-Plant Sciences, 52425 Jülich, Germany
Forschungszentrum Jülich, Institute of Bio- and Geosciences-Plant Sciences, 52425 Jülich, Germany.
Plant Physiol. 2020 Nov;184(3):1221-1235. doi: 10.1104/pp.20.00488. Epub 2020 Sep 4.
To answer long-standing questions about how plants use and regulate water, an affordable, noninvasive way to determine local root water uptake (RWU) is required. Here, we present a sensor, the soil water profiler (SWaP), which can determine local soil water content (θ) with a precision of 6.10 cm ⋅ cm, an accuracy of 0.002 cm ⋅ cm, a temporal resolution of 24 min, and a one-dimensional spatial resolution of 1 cm. The sensor comprises two copper sheets, integrated into a sleeve and connected to a coil, which form a resonant circuit. A vector network analyzer, inductively coupled to the resonant circuit, measures the resonance frequency, against which θ was calibrated. The sensors were integrated into a positioning system, which measures θ along the depth of cylindrical tubes. When combined with modulating light (4-h period) and resultant modulating plant transpiration, the SWaP enables quantification of the component of RWU distribution that varies proportionally with total plant water uptake, and distinguishes it from soil water redistribution via soil pores and roots. Additionally, as a young, growing maize () plant progressively tapped its soil environment dry, we observed clear changes in plant-driven RWU and soil water redistribution profiles. Our SWaP setup can measure the RWU and redistribution of sandy-soil water content with unprecedented precision. The SWaP is therefore a promising device offering new insights into soil-plant hydrology, with applications for functional root phenotyping in nonsaline, temperature-controlled conditions, at low cost.
为了回答关于植物如何利用和调节水分的长期存在的问题,需要一种经济实惠、非侵入性的方法来确定局部根系水分吸收(RWU)。在这里,我们提出了一种传感器,即土壤水分剖面仪(SWaP),它可以以 6.10 厘米 ⋅ 厘米的精度、0.002 厘米 ⋅ 厘米的准确度、24 分钟的时间分辨率和 1 厘米的一维空间分辨率来确定局部土壤含水量(θ)。传感器由两个铜片组成,集成在一个套管中并与一个线圈相连,形成一个谐振电路。一个矢量网络分析仪通过感应与谐振电路耦合,测量谐振频率,然后对θ进行校准。传感器被集成到一个定位系统中,该系统可以测量圆柱形管沿深度的θ。当与调制光(4 小时周期)和由此产生的植物蒸腾调制相结合时,SWaP 能够量化与总植物水分吸收成正比变化的 RWU 分布分量,并将其与通过土壤孔隙和根系进行的土壤水分再分配区分开来。此外,当一个年轻的、生长中的玉米植株逐渐耗尽其土壤环境中的水分时,我们观察到 RWU 和土壤水分再分配分布的明显变化。我们的 SWaP 装置可以以前所未有的精度测量沙质土壤水分的 RWU 和再分配。因此,SWaP 是一种很有前途的设备,为土壤-植物水文学提供了新的见解,并可在非盐渍、温度可控的条件下以低成本应用于功能根系表型分析。