Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea.
Eur Radiol. 2021 Mar;31(3):1693-1706. doi: 10.1007/s00330-020-07168-y. Epub 2020 Sep 4.
To develop a classification system using imaging features to interpret breast non-mass lesions (NMLs) detected on US and to stratify their cancer risk.
This retrospective study included 715 patients with 715 breast NMLs detected on breast US from 2012 to 2016. Each patient underwent mammography at the time of diagnosis. Radiologists assessed US and mammographic features and final BI-RADS categories. Multivariable logistic regression was used to find imaging features associated with malignancy in a development dataset (n = 460). A system to classify BI-RADS categories (3 to 5) was developed based on the odds ratios (ORs) of imaging features significantly associated with malignancy and validated in a distinct validation dataset (n = 255).
Among 715 NMLs, 385 (53.8%) were benign and 330 (46.2%) were malignant. In the development dataset, the following B-mode US features were associated with malignancy (all p < 0.001): segmental distribution (OR = 3.03; 95% confidence interval [CI], 1.50-6.15), associated calcifications (OR = 4.26; 95% CI, 1.62-11.18), abnormal ductal change (OR = 4.91; 95% CI, 2.07-11.68), and posterior shadowing (OR = 20.20; 95% CI, 6.46-63.23). The following mammographic features were also associated with malignancy (all p < 0.001): calcifications (OR = 7.98; 95% CI, 3.06-20.81) and focal asymmetry (OR = 4.75; 95% CI, 1.90-11.88). In the validation dataset, our classification system using US and mammography showed a higher area under the curve (0.951-0.956) compared to when it was not applied (0.908-0911) to predict malignancy with BI-RADS categories (p < 0.05).
Our classification system which incorporates US and mammographic features of breast NMLs can help interpret and manage all NMLs detected on breast US by stratifying cancer risk according to BI-RADS categories.
• When diagnosing breast NMLs detected on US, suspicious US features are segmental distribution, associated abnormal ductal change, calcifications, and posterior shadowing within or around the NML on B-mode US, while a probably benign US feature is the presence of multiple small cysts. • Corresponding suspicious mammographic features of breast NMLs detected on US are associated calcifications and focal asymmetry. • Our classification system which incorporates US features with and without mammography can potentially be used to interpret and manage any NMLs detected on breast US in clinical practice.
开发一种使用成像特征来解释乳腺超声上检测到的非肿块病变(NML)并对其癌症风险进行分层的分类系统。
本回顾性研究纳入了 2012 年至 2016 年间在乳腺超声上检测到的 715 例乳腺 NML 患者。每位患者在诊断时均接受了乳房 X 线摄影检查。放射科医生评估了超声和乳房 X 线摄影特征以及最终的 BI-RADS 类别。多变量逻辑回归用于在发展数据集(n=460)中寻找与恶性肿瘤相关的成像特征。基于与恶性肿瘤显著相关的成像特征的比值比(OR),在一个独立的验证数据集(n=255)中开发了一种用于分类 BI-RADS 类别(3-5)的系统。
在 715 个 NML 中,385 个(53.8%)为良性,330 个(46.2%)为恶性。在发展数据集,以下 B 型超声特征与恶性肿瘤相关(均 p<0.001):节段性分布(OR=3.03;95%置信区间[CI],1.50-6.15)、伴发钙化(OR=4.26;95%CI,1.62-11.18)、异常导管改变(OR=4.91;95%CI,2.07-11.68)和后方声影(OR=20.20;95%CI,6.46-63.23)。以下乳房 X 线摄影特征也与恶性肿瘤相关(均 p<0.001):钙化(OR=7.98;95%CI,3.06-20.81)和局灶性不对称(OR=4.75;95%CI,1.90-11.88)。在验证数据集,我们的使用超声和乳房 X 线摄影的分类系统在预测 BI-RADS 类别恶性肿瘤时,与不应用该系统(0.908-0911)相比,曲线下面积更高(0.951-0.956)(p<0.05)。
我们的分类系统纳入了乳腺 NML 的超声和乳房 X 线摄影特征,可以帮助根据 BI-RADS 类别对乳腺超声上检测到的所有 NML 进行解释和管理,从而分层癌症风险。
当诊断超声上检测到的乳腺 NML 时,可疑的超声特征是 NML 内或周围的节段性分布、伴发的异常导管改变、钙化和后方声影,而可能良性的超声特征是存在多个小囊肿。
与超声上检测到的乳腺 NML 对应的可疑乳房 X 线摄影特征是伴发钙化和局灶性不对称。
我们的分类系统结合了有和没有乳房 X 线摄影的超声特征,可能用于解释和管理在临床实践中在乳腺超声上检测到的任何 NML。