University of Luxembourg, Luxemburg Center for Systems Biomedicine, Campus Belval, 6 avenue du Swing, L-4367 Belvaux; Centre Hospitalier de Luxembourg, National Department of Neurosurgery, 4 Rue Nicolas Ernest Barblé, L-1210 Luxembourg.
University of Luxembourg, Luxemburg Center for Systems Biomedicine, Campus Belval, 6 avenue du Swing, L-4367 Belvaux.
Neuroimage. 2020 Dec;223:117330. doi: 10.1016/j.neuroimage.2020.117330. Epub 2020 Sep 2.
Deep brain stimulation (DBS) is a surgical therapy to alleviate symptoms of certain brain disorders by electrically modulating neural tissues. Computational models predicting electric fields and volumes of tissue activated are key for efficient parameter tuning and network analysis. Currently, we lack efficient and flexible software implementations supporting complex electrode geometries and stimulation settings. Available tools are either too slow (e.g. finite element method-FEM), or too simple, with limited applicability to basic use-cases. This paper introduces FastField, an efficient open-source toolbox for DBS electric field and VTA approximations. It computes scalable electric field approximations based on the principle of superposition, and VTA activation models from pulse width and axon diameter. In benchmarks and case studies, FastField is solved in about 0.2 s, ~ 1000 times faster than using FEM. Moreover, it is almost as accurate as using FEM: average Dice overlap of 92%, which is around typical noise levels found in clinical data. Hence, FastField has the potential to foster efficient optimization studies and to support clinical applications.
脑深部电刺激(DBS)是一种通过电调节神经组织来减轻某些脑部疾病症状的手术疗法。预测电场和组织激活体积的计算模型是高效参数调整和网络分析的关键。目前,我们缺乏支持复杂电极几何形状和刺激设置的高效灵活的软件实现。现有的工具要么太慢(例如有限元方法-FEM),要么过于简单,基本用途的适用性有限。本文介绍了 FastField,这是一种用于 DBS 电场和 VTA 逼近的高效开源工具箱。它基于叠加原理计算可扩展的电场逼近,并根据脉冲宽度和轴突直径计算 VTA 激活模型。在基准测试和案例研究中,FastField 的求解时间约为 0.2 秒,比使用有限元方法快约 1000 倍。此外,它的准确性几乎与使用有限元方法相当:平均 Dice 重叠率为 92%,这与临床数据中常见的噪声水平相当。因此,FastField 有可能促进高效的优化研究,并支持临床应用。