Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV 89106, USA; Department of Brain Health, University of Nevada, Las Vegas, NV 89154, USA.
Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Ave, Las Vegas, NV 89106, USA.
Neuroimage. 2020 Dec;223:117340. doi: 10.1016/j.neuroimage.2020.117340. Epub 2020 Sep 6.
Functional MRI (fMRI) is a prominent imaging technique to probe brain function, however, a substantial proportion of noise from multiple sources influences the reliability and reproducibility of fMRI data analysis and limits its clinical applications. Extensive effort has been devoted to improving fMRI data quality, but in the last two decades, there is no consensus reached which technique is more effective. In this study, we developed a novel deep neural network for denoising fMRI data, named denoising neural network (DeNN). This deep neural network is 1) applicable without requiring externally recorded data to model noise; 2) spatially and temporally adaptive to the variability of noise in different brain regions at different time points; 3) automated to output denoised data without manual interference; 4) trained and applied on each subject separately and 5) insensitive to the repetition time (TR) of fMRI data. When we compared DeNN with a number of nuisance regression methods for denoising fMRI data from Alzheimer's Disease Neuroimaging Initiative (ADNI) database, only DeNN had connectivity for functionally uncorrelated regions close to zero and successfully identified unbiased correlations between the posterior cingulate cortex seed and multiple brain regions within the default mode network or task positive network. The whole brain functional connectivity maps computed with DeNN-denoised data are approximately three times as homogeneous as the functional connectivity maps computed with raw data. Furthermore, the improved homogeneity strengthens rather than weakens the statistical power of fMRI in detecting intrinsic functional differences between cognitively normal subjects and subjects with Alzheimer's disease.
功能磁共振成像(fMRI)是一种探测大脑功能的重要成像技术,然而,来自多个来源的大量噪声影响 fMRI 数据分析的可靠性和可重复性,并限制了其临床应用。人们已经付出了大量努力来提高 fMRI 数据的质量,但在过去二十年中,哪种技术更有效尚未达成共识。在这项研究中,我们开发了一种用于 fMRI 数据去噪的新型深度神经网络,称为去噪神经网络(DeNN)。这个深度神经网络具有以下特点:1)不需要外部记录的数据来建模噪声,即可应用;2)在不同时间点不同脑区的噪声具有空间和时间适应性;3)自动输出去噪数据,无需手动干预;4)在每个个体上分别训练和应用;5)对 fMRI 数据的重复时间(TR)不敏感。当我们将 DeNN 与一些用于去噪 fMRI 数据的噪声回归方法在阿尔茨海默病神经影像学倡议(ADNI)数据库中进行比较时,只有 DeNN 具有接近零的功能上不相关区域的连接,并且成功地识别了后扣带回皮质种子与默认模式网络或任务正网络内的多个脑区之间的无偏相关。使用 DeNN 去噪数据计算的全脑功能连接图大约是使用原始数据计算的功能连接图的三倍均匀。此外,提高的均匀性增强了而不是削弱了 fMRI 检测认知正常个体和阿尔茨海默病患者之间内在功能差异的统计功效。