Suppr超能文献

去噪方法的偏倚风险:神经影像学实例。

The risk of bias in denoising methods: Examples from neuroimaging.

机构信息

Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States of America.

出版信息

PLoS One. 2022 Jul 1;17(7):e0270895. doi: 10.1371/journal.pone.0270895. eCollection 2022.

Abstract

Experimental datasets are growing rapidly in size, scope, and detail, but the value of these datasets is limited by unwanted measurement noise. It is therefore tempting to apply analysis techniques that attempt to reduce noise and enhance signals of interest. In this paper, we draw attention to the possibility that denoising methods may introduce bias and lead to incorrect scientific inferences. To present our case, we first review the basic statistical concepts of bias and variance. Denoising techniques typically reduce variance observed across repeated measurements, but this can come at the expense of introducing bias to the average expected outcome. We then conduct three simple simulations that provide concrete examples of how bias may manifest in everyday situations. These simulations reveal several findings that may be surprising and counterintuitive: (i) different methods can be equally effective at reducing variance but some incur bias while others do not, (ii) identifying methods that better recover ground truth does not guarantee the absence of bias, (iii) bias can arise even if one has specific knowledge of properties of the signal of interest. We suggest that researchers should consider and possibly quantify bias before deploying denoising methods on important research data.

摘要

实验数据集在规模、范围和细节上都在迅速增长,但这些数据集的价值受到不需要的测量噪声的限制。因此,人们很容易倾向于应用试图减少噪声和增强感兴趣信号的分析技术。在本文中,我们提请注意降噪方法可能引入偏差并导致不正确的科学推断的可能性。为了提出我们的观点,我们首先回顾了偏差和方差的基本统计概念。去噪技术通常会降低在重复测量中观察到的方差,但这可能会以引入对平均预期结果的偏差为代价。然后,我们进行了三个简单的模拟,提供了日常情况下偏差可能表现出来的具体例子:(i)不同的方法可以在降低方差方面同样有效,但有些方法会引入偏差,而有些方法则不会;(ii)确定能够更好地恢复真实情况的方法并不能保证没有偏差;(iii)即使对感兴趣的信号的属性有具体的了解,也可能会出现偏差。我们建议研究人员在将去噪方法应用于重要的研究数据之前,应考虑并可能量化偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8b/9249232/ddd12283754b/pone.0270895.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验