Suppr超能文献

基于高光谱图像深度学习特征的桃可溶性固形物含量估算方法。

Estimation Method of Soluble Solid Content in Peach Based on Deep Features of Hyperspectral Imagery.

机构信息

School of Information and Computer, Anhui Agricultural University, Hefei 230036, China.

School of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan 243032, China.

出版信息

Sensors (Basel). 2020 Sep 4;20(18):5021. doi: 10.3390/s20185021.

Abstract

Soluble solids content (SSC) is one of the important components for evaluating fruit quality. The rapid development of hyperspectral imagery provides an efficient method for non-destructive detection of SSC. Previous studies have shown that the internal quality evaluation of fruits based on spectral information features achieves better results. However, the lack of comprehensive features limits the accurate estimation of fruit quality. Therefore, the deep learning theory is applied to the estimation of the soluble solid content of peaches, a method for estimating the SSC of fresh peaches based on the deep features of the hyperspectral image fusion information is proposed, and the estimation models of different neural network structures are designed based on the stack autoencoder-random forest (SAE-RF). The results show that the accuracy of the model based on the deep features of the fusion information of hyperspectral imagery is higher than that of the model based on spectral features or image features alone. In addition, the SAE-RF model based on the 1237-650-310-130 network structure has the best prediction effect (R = 0.9184, RMSE = 0.6693). Our research shows that the proposed method can improve the estimation accuracy of the soluble solid content of fresh peaches, which provides a theoretical basis for the non-destructive detection of other components of fresh peaches.

摘要

可溶性固形物含量(SSC)是评估水果品质的重要指标之一。高光谱图像的快速发展为 SSC 的无损检测提供了一种有效的方法。先前的研究表明,基于光谱信息特征的水果内部品质评价可以取得更好的效果。然而,缺乏全面的特征限制了水果品质的准确估计。因此,将深度学习理论应用于桃可溶性固形物含量的估计中,提出了一种基于高光谱图像融合信息的深度特征估计鲜桃 SSC 的方法,并基于栈式自编码器-随机森林(SAE-RF)设计了不同神经网络结构的估计模型。结果表明,基于高光谱图像融合信息的深度特征模型的精度高于基于光谱特征或图像特征的模型。此外,基于 1237-650-310-130 网络结构的 SAE-RF 模型具有最佳的预测效果(R = 0.9184,RMSE = 0.6693)。我们的研究表明,所提出的方法可以提高鲜桃可溶性固形物含量的估计精度,为其他鲜桃成分的无损检测提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/456d/7570831/2a09fac8540e/sensors-20-05021-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验