Suppr超能文献

用于子空间聚类的结构化自动编码器

Structured AutoEncoders for Subspace Clustering.

作者信息

Peng Xi, Feng Jiashi, Xiao Shijie, Yau Wei-Yun, Zhou Joey Tianyi, Yang Songfan

出版信息

IEEE Trans Image Process. 2018 Jun 18. doi: 10.1109/TIP.2018.2848470.

Abstract

Existing subspace clustering methods typically employ shallow models to estimate underlying subspaces of unlabeled data points and cluster them into corresponding groups. However, due to the limited representative capacity of the employed shallow models, those methods may fail in handling realistic data without the linear subspace structure. To address this issue, we propose a novel subspace clustering approach by introducing a new deep model-Structured AutoEncoder (StructAE). The StructAE learns a set of explicit transformations to progressively map input data points into nonlinear latent spaces while preserving the local and global subspace structure. In particular, to preserve local structure, the StructAE learns representations for each data point by minimizing reconstruction error w.r.t. itself. To preserve global structure, the StructAE incorporates a prior structured information by encouraging the learned representation to preserve specified reconstruction patterns over the entire data set. To the best of our knowledge, StructAE is one of first deep subspace clustering approaches. Extensive experiments show that the proposed StructAE significantly outperforms 15 state-of-the-art subspace clustering approaches in terms of five evaluation metrics.

摘要

现有的子空间聚类方法通常采用浅层模型来估计未标记数据点的潜在子空间,并将它们聚类到相应的组中。然而,由于所采用的浅层模型的代表性能力有限,这些方法在处理没有线性子空间结构的现实数据时可能会失败。为了解决这个问题,我们通过引入一种新的深度模型——结构化自动编码器(StructAE),提出了一种新颖的子空间聚类方法。StructAE学习一组显式变换,以在保留局部和全局子空间结构的同时,逐步将输入数据点映射到非线性潜在空间中。具体而言,为了保留局部结构,StructAE通过最小化关于自身的重建误差来学习每个数据点的表示。为了保留全局结构,StructAE通过鼓励学习到的表示在整个数据集上保留指定的重建模式,纳入了先验结构化信息。据我们所知,StructAE是首批深度子空间聚类方法之一。大量实验表明,在五个评估指标方面,所提出的StructAE显著优于15种先进的子空间聚类方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验