Doot Robert K, Hess Henry, Vogel Viola
Center for Nanotechnology and Department of Bioengineering, University of Washington, Box 351721, Seattle, Washington 98195, USA.
Soft Matter. 2007 Feb 14;3(3):349-356. doi: 10.1039/b607281j.
Nature uses networks of oriented filaments to guide intracellular movement of cargo. We describe the first method for designing and constructing interconnected networks of oriented microtubules to create a two-dimensional in vitro transport system. Microfabricated open channels with surface-bound kinesin motor proteins are used to orient short microtubule seeds relative to each other. Guided by the channel geometry, the oriented microtubule seeds are then grown into oriented networks of microtubules, which support motility of kinesin-coated nanospheres with a directional preference determined by the microtubule orientation. In contrast to in vitro gliding motility assays where microtubules glide on kinesin-coated surfaces, engineered stationary microtubule networks could simultaneously utilize different motors, e.g. motors walking in opposite directions. Different motors, via their specific scaffolding proteins, could be utilized to selectively transport specific cargos. The presented method is the first step towards building oriented and interconnected microtubule networks with a user-designed geometry at the micron and submicron scale. The resulting platform enables multiple applications, from cargo sorting to adaptive camouflage.
自然界利用定向细丝网络来引导细胞内货物的移动。我们描述了第一种设计和构建相互连接的定向微管网络以创建二维体外运输系统的方法。带有表面结合驱动蛋白运动蛋白的微加工开放通道用于使短微管种子相互定向。在通道几何形状的引导下,定向微管种子随后生长成定向微管网络,该网络支持包被驱动蛋白的纳米球的运动,其运动方向偏好由微管方向决定。与微管在包被驱动蛋白的表面上滑动的体外滑动运动测定不同,工程化的固定微管网络可以同时利用不同的马达,例如沿相反方向行走的马达。不同的马达可以通过其特定的支架蛋白用于选择性地运输特定货物。所提出的方法是朝着在微米和亚微米尺度上构建具有用户设计几何形状的定向且相互连接的微管网络迈出的第一步。由此产生的平台可实现多种应用,从货物分拣到自适应伪装。