Suppr超能文献

通过分支微管网络构建片上细胞骨架电路。

Building on-chip cytoskeletal circuits via branched microtubule networks.

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ 08544.

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544.

出版信息

Proc Natl Acad Sci U S A. 2024 Jan 23;121(4):e2315992121. doi: 10.1073/pnas.2315992121. Epub 2024 Jan 17.

Abstract

Controllable platforms to engineer robust cytoskeletal scaffolds have the potential to create novel on-chip nanotechnologies. Inspired by axons, we combined the branching microtubule (MT) nucleation pathway with microfabrication to develop "cytoskeletal circuits." This active matter platform allows control over the adaptive self-organization of uniformly polarized MT arrays via geometric features of microstructures designed within a microfluidic confinement. We build and characterize basic elements, including turns and divisions, as well as complex regulatory elements, such as biased division and MT diodes, to construct various MT architectures on a chip. Our platform could be used in diverse applications, ranging from efficient on-chip molecular transport to mechanical nano-actuators. Further, cytoskeletal circuits can serve as a tool to study how the physical environment contributes to MT architecture in living cells.

摘要

可控平台可以设计出稳健的细胞骨架支架,从而有可能创造出新颖的片上纳米技术。受轴突的启发,我们将分支微管(MT)成核途径与微加工相结合,开发了“细胞骨架电路”。这种活性物质平台可以通过微结构的几何特征来控制均匀极化 MT 阵列的自适应自组织,这些微结构是在微流控限制内设计的。我们构建和表征了基本元件,包括转弯和分裂,以及复杂的调节元件,如偏向分裂和 MT 二极管,以便在芯片上构建各种 MT 结构。我们的平台可用于各种应用,从高效的片上分子传输到机械纳米执行器。此外,细胞骨架电路可以作为一种工具,用于研究物理环境如何影响活细胞中的 MT 结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/539c/10823238/4e45fb9a280d/pnas.2315992121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验