文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

癌症药物耐药性中的转录组学和蛋白质组学:治疗意义。

Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications.

机构信息

Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China.

College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.

出版信息

Signal Transduct Target Ther. 2020 Sep 8;5(1):193. doi: 10.1038/s41392-020-00300-w.


DOI:10.1038/s41392-020-00300-w
PMID:32900991
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7479143/
Abstract

Drug resistance is a major hurdle in cancer treatment and a key cause of poor prognosis. Epitranscriptomics and epiproteomics are crucial in cell proliferation, migration, invasion, and epithelial-mesenchymal transition. In recent years, epitranscriptomic and epiproteomic modification has been investigated on their roles in overcoming drug resistance. In this review article, we summarized the recent progress in overcoming cancer drug resistance in three novel aspects: (i) mRNA modification, which includes alternative splicing, A-to-I modification and mRNA methylation; (ii) noncoding RNAs modification, which involves miRNAs, lncRNAs, and circRNAs; and (iii) posttranslational modification on molecules encompasses drug inactivation/efflux, drug target modifications, DNA damage repair, cell death resistance, EMT, and metastasis. In addition, we discussed the therapeutic implications of targeting some classical chemotherapeutic drugs such as cisplatin, 5-fluorouridine, and gefitinib via these modifications. Taken together, this review highlights the importance of epitranscriptomic and epiproteomic modification in cancer drug resistance and provides new insights on potential therapeutic targets to reverse cancer drug resistance.

摘要

耐药性是癌症治疗的主要障碍,也是预后不良的关键原因。表观转录组学和表观蛋白质组学在细胞增殖、迁移、侵袭和上皮-间充质转化中起着至关重要的作用。近年来,人们研究了表观转录组学和表观蛋白质组学修饰在克服耐药性方面的作用。在这篇综述文章中,我们总结了在三个新方面克服癌症耐药性的最新进展:(i)mRNA 修饰,包括可变剪接、A-to-I 修饰和 mRNA 甲基化;(ii)非编码 RNA 修饰,涉及 miRNA、lncRNA 和 circRNA;以及(iii)分子的翻译后修饰,包括药物失活/外排、药物靶点修饰、DNA 损伤修复、细胞死亡抵抗、上皮-间充质转化和转移。此外,我们还讨论了通过这些修饰来靶向一些经典化疗药物(如顺铂、5-氟尿嘧啶和吉非替尼)的治疗意义。综上所述,本综述强调了表观转录组学和表观蛋白质组学修饰在癌症耐药性中的重要性,并为逆转癌症耐药性提供了新的潜在治疗靶点的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/7479143/fd3bbde098b6/41392_2020_300_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/7479143/af26e2574531/41392_2020_300_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/7479143/9e4e17493535/41392_2020_300_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/7479143/9591bc1307f4/41392_2020_300_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/7479143/5116c17a7f7c/41392_2020_300_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/7479143/64fb58f898a1/41392_2020_300_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/7479143/fd3bbde098b6/41392_2020_300_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/7479143/af26e2574531/41392_2020_300_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/7479143/9e4e17493535/41392_2020_300_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/7479143/9591bc1307f4/41392_2020_300_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/7479143/5116c17a7f7c/41392_2020_300_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/7479143/64fb58f898a1/41392_2020_300_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e555/7479143/fd3bbde098b6/41392_2020_300_Fig6_HTML.jpg

相似文献

[1]
Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications.

Signal Transduct Target Ther. 2020-9-8

[2]
MiR-134/487b/655 cluster regulates TGF-β-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells.

Mol Cancer Ther. 2014-2

[3]
MiR-203 downregulation is responsible for chemoresistance in human glioblastoma by promoting epithelial-mesenchymal transition via SNAI2.

Oncotarget. 2015-4-20

[4]
Surmounting cancer drug resistance: New insights from the perspective of N-methyladenosine RNA modification.

Drug Resist Updat. 2020-12

[5]
m6A RNA methylation and beyond - The epigenetic machinery and potential treatment options.

Drug Discov Today. 2021-11

[6]
Lnc2Cancer 3.0: an updated resource for experimentally supported lncRNA/circRNA cancer associations and web tools based on RNA-seq and scRNA-seq data.

Nucleic Acids Res. 2021-1-8

[7]
A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition.

Clin Cancer Res. 2016-2-1

[8]
Involvement of Non-coding RNAs in Chemo- and Radioresistance of Colorectal Cancer.

Adv Exp Med Biol. 2016

[9]
Long non-coding RNAs in cancer drug resistance development.

DNA Repair (Amst). 2016-9

[10]
Regulation of cell growth and migration by miR-96 and miR-183 in a breast cancer model of epithelial-mesenchymal transition.

PLoS One. 2020-5-12

引用本文的文献

[1]
Synergistic integration of extracellular vesicles and metal-organic frameworks: unlocking new opportunities in disease diagnosis and therapy.

Theranostics. 2025-7-28

[2]
Epitranscriptomic mechanisms and implications of RNA mC modification in cancer.

Theranostics. 2025-7-25

[3]
Decoding breast cancer treatment resistance through genetic, epigenetic, and immune-regulatory mechanisms: from molecular insights to translational perspectives.

Cancer Drug Resist. 2025-7-21

[4]
Global research trends on epigenetics and cancer: A bibliometric analysis.

Medicine (Baltimore). 2025-8-15

[5]
Epitranscriptomic alterations induced by environmental toxins: implications for RNA modifications and disease.

Genes Environ. 2025-8-4

[6]
Acquired resistance in cancer: towards targeted therapeutic strategies.

Nat Rev Cancer. 2025-6-3

[7]
Exosome-mediated ferroptosis in the tumor microenvironment: from molecular mechanisms to clinical application.

Cell Death Discov. 2025-5-6

[8]
Multifaceted roles of OCT4 in tumor microenvironment: biology and therapeutic implications.

Oncogene. 2025-5

[9]
Exosome-transmitted LUCAT1 promotes stemness transformation and chemoresistance in bladder cancer by binding to IGF2BP2.

J Exp Clin Cancer Res. 2025-3-3

[10]
Epigenetic Regulation of Stromal and Immune Cells and Therapeutic Targets in the Tumor Microenvironment.

Biomolecules. 2025-1-6

本文引用的文献

[1]
Single-cell RNA sequencing reveals the tumor microenvironment and facilitates strategic choices to circumvent treatment failure in a chemorefractory bladder cancer patient.

Genome Med. 2020-5-27

[2]
Epithelial-Mesenchymal Transition in Cancer: A Historical Overview.

Transl Oncol. 2020-6

[3]
Role of RNA modifications in cancer.

Nat Rev Cancer. 2020-4-16

[4]
A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy.

Bioorg Chem. 2020-6

[5]
Hsa_circ_0079662 induces the resistance mechanism of the chemotherapy drug oxaliplatin through the TNF-α pathway in human colon cancer.

J Cell Mol Med. 2020-5

[6]
Defining and Targeting Adaptations to Oncogenic KRAS Inhibition Using Quantitative Temporal Proteomics.

Cell Rep. 2020-3-31

[7]
Analysis of lncRNA, miRNA and mRNA-associated ceRNA networks and identification of potential drug targets for drug-resistant non-small cell lung cancer.

J Cancer. 2020-3-5

[8]
Biological Roles and Mechanisms of Circular RNA in Human Cancers.

Onco Targets Ther. 2020-3-9

[9]
Noncoding RNAs in gastric cancer: implications for drug resistance.

Mol Cancer. 2020-3-19

[10]
Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance.

Mol Cancer. 2020-3-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索