Habibi Ruhollah, He Vincent, Ghavamian Sara, de Marco Alex, Lee Tzong-Hsien, Aguilar Marie-Isabel, Zhu Dandan, Lim Rebecca, Neild Adrian
Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria - Australia.
Applied Micro and Nano Technology Lab, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria - Australia.
Lab Chip. 2020 Sep 29;20(19):3633-3643. doi: 10.1039/d0lc00623h.
Exosomes, a form of extracellular vesicle, are an important precursor in regenerative medicine. Microfluidic methods exist to capture these sub-micrometer sized objects from small quantities of sample, ideal for multiple diagnostic applications. To address the challenge of extraction from large volumes, we use the visual access offered by microfluidic techniques to probe the physical mechanisms behind a method which is compatible with future upscaling. The sound wave actuated nano-sieve uses resonant modes in a packed bed of microparticles to exert trapping forces on nanoparticles. Here, we examine the role of the microparticle size, demonstrating better performance from 15 μm particles than 7 μm particles. When applied to biological samples, we demonstrate for the first time that a packed bed of these larger particles is capable of capturing exosomes and liposomes, the captured particles being on average 20 to 40 times smaller than the pores within the trapped bed.
外泌体作为细胞外囊泡的一种形式,是再生医学中的重要前体物质。存在微流控方法可从少量样本中捕获这些亚微米级大小的物体,这对于多种诊断应用而言非常理想。为应对从大量样本中提取的挑战,我们利用微流控技术提供的可视化通道来探究一种与未来扩大规模兼容的方法背后的物理机制。声波驱动的纳米筛利用微粒填充床中的共振模式对纳米颗粒施加捕获力。在此,我们研究了微粒尺寸的作用,证明15μm的微粒比7μm的微粒表现更好。当应用于生物样本时,我们首次证明这些较大微粒的填充床能够捕获外泌体和脂质体,捕获的颗粒平均比捕获床内的孔隙小20至40倍。