Suppr超能文献

基于MSSe(M = Mo,W)和类石墨烯氮化镓的范德华异质结构:用于水分解的增强光电和光催化性能。

van der Waals heterostructures based on MSSe (M = Mo, W) and graphene-like GaN: enhanced optoelectronic and photocatalytic properties for water splitting.

作者信息

Idrees M, Nguyen Chuong V, Bui H D, Ahmad Iftikhar, Amin Bin

机构信息

Department of Physics, Hazara University, Mansehra 21300, Pakistan.

Department of Materials Science and Engineering, Le Quy Don Technical University, Ha Noi 100000, Vietnam.

出版信息

Phys Chem Chem Phys. 2020 Sep 23;22(36):20704-20711. doi: 10.1039/d0cp03434g.

Abstract

The geometric structure, electronic, optical and photocatalytic properties of MSSe-g-GaN (M = Mo, W) van der Waals (vdW) heterostructures are investigated by performing first-principles calculations. We find that the MoSSe-g-GaN heterostructure exhibits type-II band alignment for all stacking patterns. While the WSSe-g-GaN heterostructure forms the type-II or type-I band alignment for the stacking model-I or model II, respectively. The average electrostatic potential shows that the potential of g-GaN is deeper than the MSSe monolayer, leading to the formation of an electrostatic field across the interface, causing the transfer of photogenerated electrons and holes. Efficient interfacial formation of interface and charge transfer reduce the work function of MSSe-g-GaN vdW heterostructures as compared to the constituent monolayer. The difference in the carrier mobility for electrons and holes suggests that these heterostructures could be utilized for hole/electron separation. Absorption spectra demonstrate that strong absorption from infrared to visible light in these vdW heterostructures can be achieved. Appropriate valence and conduction band edge positions with standard redox potentials provide enough force to drive the photogenerated electrons and holes to dissociate water into H+/H2 and O2/H2O at pH = 0.

摘要

通过进行第一性原理计算,研究了MSSe-g-GaN(M = Mo,W)范德华(vdW)异质结构的几何结构、电子、光学和光催化性质。我们发现,对于所有堆叠模式,MoSSe-g-GaN异质结构都表现出II型能带排列。而WSSe-g-GaN异质结构分别对于堆叠模型-I或模型-II形成II型或I型能带排列。平均静电势表明,g-GaN的电势比MSSe单层更深,导致在界面处形成静电场,从而引起光生电子和空穴的转移。与组成单层相比,界面的有效形成和电荷转移降低了MSSe-g-GaN vdW异质结构的功函数。电子和空穴的载流子迁移率差异表明,这些异质结构可用于空穴/电子分离。吸收光谱表明,在这些vdW异质结构中可以实现从红外到可见光的强吸收。具有标准氧化还原电位的合适价带和导带边缘位置提供了足够的力来驱动光生电子和空穴在pH = 0时将水分解为H+/H2和O2/H2O。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验