Suppr超能文献

用于形成性评估的具有层次属性的纵向诊断分类模型的Q矩阵设计

Q-Matrix Designs of Longitudinal Diagnostic Classification Models With Hierarchical Attributes for Formative Assessment.

作者信息

Tian Wei, Zhang Jiahui, Peng Qian, Yang Xiaoguang

机构信息

Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing, China.

出版信息

Front Psychol. 2020 Jul 30;11:1694. doi: 10.3389/fpsyg.2020.01694. eCollection 2020.

Abstract

Longitudinal diagnostic classification models (DCMs) with hierarchical attributes can characterize learning trajectories in terms of the transition between attribute profiles for formative assessment. A longitudinal DCM for hierarchical attributes was proposed by imposing model constraints on the transition DCM. To facilitate the applications of longitudinal DCMs, this paper explored the critical topic of the Q-matrix design with a simulation study. The results suggest that including the transpose of the R-matrix in the Q-matrix improved the classification accuracy. Moreover, 10-item tests measuring three linear attributes across three time points provided satisfactory classification accuracy for low-stakes assessment; lower classification rates were observed with independent or divergent attributes. Q-matrix design recommendations were provided for the short-test situation. Implications and future directions were discussed.

摘要

具有分层属性的纵向诊断分类模型(DCM)可以根据形成性评估中属性概况之间的转变来刻画学习轨迹。通过对转变DCM施加模型约束,提出了一种用于分层属性的纵向DCM。为了促进纵向DCM的应用,本文通过模拟研究探讨了Q矩阵设计这一关键主题。结果表明,在Q矩阵中纳入R矩阵的转置可提高分类准确性。此外,在三个时间点测量三个线性属性的10项测试为低风险评估提供了令人满意的分类准确性;对于独立或发散属性,观察到较低的分类率。针对短测试情况提供了Q矩阵设计建议。讨论了相关影响和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b9c/7438705/58e48a68d489/fpsyg-11-01694-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验