Adesina Aduragbemi S, Świderek Katarzyna, Luk Louis Y P, Moliner Vicent, Allemann Rudolf K
School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom.
Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain.
ACS Catal. 2020 Jul 17;10(14):7907-7914. doi: 10.1021/acscatal.0c01856. Epub 2020 Jun 19.
The contribution of ligand-ligand electrostatic interaction to transition state formation during enzyme catalysis has remained unexplored, even though electrostatic forces are known to play a major role in protein functions and have been investigated by the vibrational Stark effect (VSE). To monitor electrostatic changes along important steps during catalysis, we used a nitrile probe (T46C-CN) inserted proximal to the reaction center of three dihydrofolate reductases (DHFRs) with different biophysical properties, DHFR (EcDHFR), its conformationally impaired variant (EcDHFR-S148P), and DHFR (BsDHFR). Our combined experimental and computational approach revealed that the electric field projected by the substrate toward the probe negates those exerted by the cofactor when both are bound within the enzymes. This indicates that compared to previous models that focus exclusively on subdomain reorganization and protein-ligand contacts, ligand-ligand interactions are the key driving force to generate electrostatic environments conducive for catalysis.
尽管已知静电力在蛋白质功能中起主要作用,并且已经通过振动斯塔克效应(VSE)进行了研究,但配体-配体静电相互作用对酶催化过程中过渡态形成的贡献仍未得到探索。为了监测催化过程中重要步骤的静电变化,我们使用了一个腈探针(T46C-CN),该探针插入到具有不同生物物理特性的三种二氢叶酸还原酶(DHFR)的反应中心附近,即DHFR(EcDHFR)、其构象受损变体(EcDHFR-S148P)和DHFR(BsDHFR)。我们结合实验和计算的方法表明,当底物和辅因子都结合在酶内时,底物向探针投射的电场抵消了辅因子施加的电场。这表明,与之前仅关注亚结构域重组和蛋白质-配体接触的模型相比,配体-配体相互作用是产生有利于催化的静电环境的关键驱动力。