Suppr超能文献

探究大肠杆菌二氢叶酸还原酶催化循环中活性位点微环境的静电作用。

Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase.

作者信息

Liu C Tony, Layfield Joshua P, Stewart Robert J, French Jarrod B, Hanoian Philip, Asbury John B, Hammes-Schiffer Sharon, Benkovic Stephen J

机构信息

Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States.

出版信息

J Am Chem Soc. 2014 Jul 23;136(29):10349-60. doi: 10.1021/ja5038947. Epub 2014 Jul 11.

Abstract

Electrostatic interactions play an important role in enzyme catalysis by guiding ligand binding and facilitating chemical reactions. These electrostatic interactions are modulated by conformational changes occurring over the catalytic cycle. Herein, the changes in active site electrostatic microenvironments are examined for all enzyme complexes along the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) by incorporation of thiocyanate probes at two site-specific locations in the active site. The electrostatics and degree of hydration of the microenvironments surrounding the probes are investigated with spectroscopic techniques and mixed quantum mechanical/molecular mechanical (QM/MM) calculations. Changes in the electrostatic microenvironments along the catalytic environment lead to different nitrile (CN) vibrational stretching frequencies and (13)C NMR chemical shifts. These environmental changes arise from protein conformational rearrangements during catalysis. The QM/MM calculations reproduce the experimentally measured vibrational frequency shifts of the thiocyanate probes across the catalyzed hydride transfer step, which spans the closed and occluded conformations of the enzyme. Analysis of the molecular dynamics trajectories provides insight into the conformational changes occurring between these two states and the resulting changes in classical electrostatics and specific hydrogen-bonding interactions. The electric fields along the CN axes of the probes are decomposed into contributions from specific residues, ligands, and solvent molecules that make up the microenvironments around the probes. Moreover, calculation of the electric field along the hydride donor-acceptor axis, along with decomposition of this field into specific contributions, indicates that the cofactor and substrate, as well as the enzyme, impose a substantial electric field that facilitates hydride transfer. Overall, experimental and theoretical data provide evidence for significant electrostatic changes in the active site microenvironments due to conformational motion occurring over the catalytic cycle of ecDHFR.

摘要

静电相互作用在酶催化中起着重要作用,它通过引导配体结合和促进化学反应来实现。这些静电相互作用会受到催化循环中发生的构象变化的调节。在此,通过在大肠杆菌二氢叶酸还原酶(ecDHFR)活性位点的两个位点特异性位置引入硫氰酸盐探针,研究了沿其催化循环的所有酶复合物活性位点静电微环境的变化。利用光谱技术和混合量子力学/分子力学(QM/MM)计算研究了探针周围微环境的静电学和水合程度。沿催化环境的静电微环境变化导致不同的腈(CN)振动拉伸频率和(13)C NMR化学位移。这些环境变化源于催化过程中蛋白质的构象重排。QM/MM计算再现了硫氰酸盐探针在催化氢化物转移步骤(该步骤跨越酶的闭合和封闭构象)中实验测量的振动频率变化。对分子动力学轨迹的分析深入了解了这两种状态之间发生的构象变化以及由此导致的经典静电和特定氢键相互作用的变化。沿探针CN轴的电场被分解为构成探针周围微环境的特定残基、配体和溶剂分子的贡献。此外,沿氢化物供体-受体轴的电场计算以及该场分解为特定贡献,表明辅因子、底物以及酶施加了一个强大的电场,促进了氢化物转移。总体而言,实验和理论数据为ecDHFR催化循环中由于构象运动导致的活性位点微环境中显著的静电变化提供了证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d25/4183630/b10e13a72e66/ja-2014-038947_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验